Asymptotic Expansions in the Conditional Central Limit Theorem

Dieter Landers
Institute of Mathematics, University of Koln, D-5000 Köln 41, West Germany

AND
Lothar Rogge
Fachbereich 11-Mathematik, University of Duisburg, D-4100 Duisburg 1, West Germany

Communicated by P. L. Butzer
Received February 10, 1989

Abstract

Let $X_{n}, n \in \mathbb{N}$, be i.i.d. with mean 0 , variance 1 , and $E\left(\left|X_{n}\right|^{r}\right)<\infty$ for some $r \geqslant 3$. Assume that Cramer's condition is fulfilled. We prove that the conditional probabilities $P\left(1 / \sqrt{n} \sum_{i=1}^{n} X_{i} \leqslant t \mid B\right)$ can be approximated by a modified Edgeworth expansion up to order $o\left(1 / n^{(r-2) / 2}\right)$, if the distances of the set B from the σ-fields $\sigma\left(X_{1}, \ldots, X_{n}\right)$ are of order $O\left(1 / n^{(r-2) / 2}(\lg n)^{8}\right)$, where $\beta<-(r-2) / 2$ for $r \notin \mathbb{N}$ and $\beta<-r / 2$ for $r \in \mathbb{N}$. An example shows that if we replace $\beta<-(r-2) / 2$ by $\beta=-(r-2) / 2$ for $r \notin \mathbb{N}(\beta<-r / 2$ by $\beta=-r / 2$ for $r \in \mathbb{N})$ we can only obtain the approximation order $O\left(1 / n^{(r-2) / 2}\right)$ for $r \notin \mathbb{N}\left\{O\left(\lg \lg n / n^{(r-2) / 2}\right)\right.$ for $\left.r \in \mathbb{N}\right)$. © 1990 Academic Press, Inc.

1. Introduction and Notations

Let $X_{n}, n \in \mathbb{N}$, be a sequence of i.i.d. real valued random variables with mean 0 and variance 1. Put $S_{n}=\sum_{i=1}^{n} X_{i}$ and $S_{n}^{*}=1 / \sqrt{n} \sum_{i=1}^{n} X_{i}$. Denote by $d\left(B, \sigma\left(X_{1}, \ldots, X_{n}\right)\right):=\inf \left\{P\left(B \triangle B_{n}\right): B_{n} \in \sigma\left(X_{1}, \ldots, X_{n}\right)\right\}$ the distance of the set B from the σ-field $\sigma\left(X_{1}, \ldots, X_{n}\right)$. In this paper we look for Edgeworth expansions of the conditional probabilities $P\left(S_{n}^{*} \leqslant t \mid B\right)$. If $E\left(\left|X_{1}\right|^{r}\right)<\infty$ for some $r \geqslant 3$ and if Cramér's condition is fulfilled, i.e., $\lim _{|t| \rightarrow \infty}\left|E\left(e^{i X_{1}}\right)\right|<1$, then we have (for $B=\Omega$) the well-known expansion

$$
\sup _{t \in \mathbb{R}}\left|P\left(S_{n}^{*} \leqslant t\right)-\Phi(t)-\varphi(t) \sum_{i=1}^{[r]-2} \frac{1}{n^{i / 2}} Q_{i}(t)\right|=o\left(\frac{1}{n^{(r-2) / 2}}\right)
$$

(see, e.g., Theorem 2, p. 168 of Petrov [6]). Here Φ denotes the standard normal distribution function and φ its density.
$Q_{i}(t)$ are the classical polynomials and $[x]=\max \{n \in \mathbb{N}: n \leqslant x\}$. For more general sets B there exists only one expansion result (see [4]). This result deals with the case $r=4$ and uses one correcting term. It was shown in [4] that $d\left(B, \sigma\left(X_{1}, . ., X_{n}\right)\right)=O\left(1 / n(\lg n)^{\beta}\right)$ for some $\beta<-2$ implies that

$$
\sup _{t \in \mathbb{R}}\left|P\left(S_{n}^{*} \leqslant t \mid B\right)-\Phi(t)-\varphi(t) \frac{\hat{Q}_{1, B}(t)}{n^{1 / 2}}\right|=O\left(\frac{1}{n}\right)
$$

with $\hat{Q}_{1, B}(t)=Q_{1}(t)-a$, where a is a constant depending on B and the distribution of X_{1}.
In this paper we give higher order asymptotic expansions for $P\left(S_{n}^{*} \leqslant t \mid B\right)$. We prove that

$$
d\left(B, \sigma\left(X_{1}, \ldots, X_{n}\right)\right)=O\left(\frac{1}{n^{(r-2) / 2}}(\lg n)^{\beta}\right)
$$

implies that there exist polynomials $\hat{Q}_{i, B}(t)$ such that uniformly in $t \in \mathbb{R}$,

$$
\begin{aligned}
& \left|P\left(S_{n}^{*} \leqslant t \mid B\right)-\Phi(t)-\varphi(t) \sum_{i=1}^{[r]-2} \frac{\hat{Q}_{i, B}(t)}{n^{i / 2}}\right| \\
& \quad=\left\{\begin{array}{lll}
o\left(\frac{1}{n^{(r-2) / 2}}\right), & r \notin \mathbb{N}, & \beta<-\frac{r-2}{2} \\
o\left(\frac{(\lg n)^{\beta+(r-2) / 2}}{n^{(r-2) / 2}}\right), & r \notin \mathbb{N}, & \beta \geqslant-\frac{r-2}{2} \\
o\left(\frac{1}{n^{(r-2) / 2}}\right), & r \in \mathbb{N}, & \beta<-r / 2 \\
O\left(\frac{\lg \lg n}{n^{(r-2) / 2}}\right), & r \in \mathbb{N}, & \beta=-r / 2 \\
o\left(\frac{(\lg n)^{\beta+r / 2}}{n^{(r-2) / 2}}\right), & r \in \mathbb{N}, & \beta>-r / 2
\end{array}\right.
\end{aligned}
$$

(see Theorem 1 with $g=1_{B}$).
This result shows a surprising difference between the cases $r \in \mathbb{N}$ and $r \notin \mathbb{N}$. Nevertheless all approximation orders are optimal (see Example 2).

2. The Results

In this section we present our results, postponing the proofs until Section 3.

If g is a measurable function we denote by

$$
d_{1}\left(g, \sigma\left(X_{1}, \ldots, X_{n}\right)\right):=\inf \left\{E(|g-h|): h \text { is } \sigma\left(X_{1}, \ldots, X_{n}\right) \text { measurable }\right\}
$$

the $\left\|\|_{1}\right.$-distance of g from the subspace of all integrable $\sigma\left(X_{1}, \ldots, X_{n}\right)$ measurable functions. We write $E\left(S_{n}^{*} \leqslant t, g\right)$ instead of $E\left(g \cdot 1_{\left\{S_{n}^{*} \leqslant t\right\}}\right)$.

The following theorem is the main result of this paper.
Since $\varphi(t)\left(1 / n^{([r]-2) / 2}\right) Q_{[r]-2, g}(t)=O_{n}(r, \beta)$ for the last two cases of this theorem (i.e., for $r \in \mathbb{N}, \beta \geqslant-r / 2$) we omit in these cases the last term of the expansion. Hence we consider in these cases the expansion up to the $(r-3)$ th term only. Observe that all convergence orders $O_{n}(r, \beta)$ are optimal (see Example 2).

Theorem 1. Let $r \geqslant 3$ and let $X_{n}, n \in \mathbb{N}$, be i.i.d. with $E\left(X_{1}\right)=0$, $E\left(X_{1}^{2}\right)=1$, and $E\left(\left|X_{1}\right|^{r}\right)<\infty$. Assume that Cramér's condition is fulfilled. Let g be a bounded measurable function, let $\beta \in \mathbb{R}$, and assume that

$$
\begin{equation*}
d_{1}\left(g, \sigma\left(X_{1}, \ldots, X_{n}\right)\right)=O\left(\frac{1}{n^{(r-2) / 2}}(\lg n)^{\beta}\right) \tag{*}
\end{equation*}
$$

Then there exist polynomials $Q_{i, g}(t)$ (the coefficients depend on g and on the distribution of X_{1}) such that

$$
\sup _{t \in \mathbb{R}}\left|E\left(S_{n}^{*} \leqslant t, g\right)-\Phi(t) E(g)-\varphi(t) \sum_{i=1}^{j(r, \beta)} \frac{1}{n^{i / 2}} Q_{i, g}(t)\right|=O_{n}(r, \beta),
$$

where

$$
j(r, \beta)=\left\{\begin{array}{lll}
{[r]-2,} & \text { if } r \notin \mathbb{N} \text { or } r \in \mathbb{N}, & \beta<-r / 2 \\
r-3, & \text { if } r \in \mathbb{N}, & \beta \geqslant-r / 2
\end{array}\right.
$$

and

$$
O_{n}(r, \beta)= \begin{cases}0\left(\frac{1}{n^{(r-2) / 2}}\right), & \text { if } r \notin \mathbb{N}, \quad \beta<-\frac{r-2}{2} \tag{i}\\ 0\left(\frac{(\lg n)^{\beta+(r-2) / 2}}{n^{(r-2) / 2}}\right), & \text { if } r \notin \mathbb{N}, \beta \geqslant-\frac{r-2}{2} \\ o\left(\frac{1}{n^{(r-2) / 2}}\right), & \text { if } r \in \mathbb{N}, \quad \beta<-r / 2 \\ O\left(\frac{\lg \lg n}{n^{(r-2) / 2}}\right), & \text { if } r \in \mathbb{N}, \beta=-r / 2 \\ o\left(\frac{(\lg n)^{\beta+r / 2}}{n^{(r-2) / 2}}\right), & \text { if } r \in \mathbb{N}, \quad \beta>-r / 2\end{cases}
$$

Remark. The polynomials $Q_{i, g}(t)$ of Theorem 1 can be computed alon the lines of the proof of Theorem 1. We have, e.g.,

$$
\begin{aligned}
& Q_{1, g}(t)=Q_{1}(t) E(g)-a_{1} \\
& Q_{2, g}(t)=Q_{2}(t) E(g)+\left(\frac{1}{2} E\left(X_{1}^{3}\right) a_{1}-\frac{1}{2} a_{2}\right) t-\frac{1}{6} a_{1} E\left(X_{1}^{3}\right) t^{3}
\end{aligned}
$$

where a_{1}, a_{2} are constants depending on g and on the distribution of X For $Q_{1, g}(t)$ see also Theorem 1 of [4].

The following example shows that the approximation orders give in Theorem 1 are optimal. It is well known that even if $g=1_{\Omega^{-}}$ whence $d_{1}\left(g, \sigma\left(X_{1}, \ldots, X_{n}\right)\right) \equiv 0$-the approximation orders $o\left(1 / n^{(r-2) / 2}\right)$ (Theorem 1 (i.e., case (i) and case (iii)) cannot be improved. Therefos Example 2 deals with the remaining three cases. Always we choos $g=1_{B}$ with a suitable set B. Observe that $d_{1}\left(1_{B}, \sigma\left(X_{1}, \ldots, X_{n}\right)\right) \leqslant$ $d\left(B, \sigma\left(X_{1}, \ldots, X_{n}\right)\right)$ (this can be shown, e.g., by using the Fubini Theorem

Example 2. Let $X_{n}, n \in \mathbb{N}$, be i.i.d. $N(0,1)$-distributed. Let $r \geqslant 3, \beta \in \mathbb{F}$ Then there exist $B \in \sigma\left(X_{n}: n \in \mathbb{N}\right)$ and $t_{0} \in \mathbb{R}, c>0$, such that

$$
d\left(B, \sigma\left(X_{1}, \ldots, X_{n}\right)\right)=O\left(\frac{1}{n^{(r-2) / 2}}(\lg n)^{\beta}\right)
$$

and

$$
\left|E\left(S_{n}^{*} \leqslant t_{0}, B\right)-\Phi\left(t_{0}\right) P(B)-\varphi\left(t_{0}\right) \sum_{i=1}^{j} \frac{1}{n^{i / 2}} Q_{i, B}\left(t_{0}\right)\right| \geqslant c \delta_{n}
$$

for infinitely many $n \in \mathbb{N}$, where

$$
j=j(r)= \begin{cases}{[r]-2,} & r \notin \mathbb{N} \\ r-3, & r \in \mathbb{N}\end{cases}
$$

and

$$
\delta_{n}=\delta_{n}(r, \beta)= \begin{cases}\frac{(\lg n)^{\beta+(r-2) / 2}}{n^{(r-2) / 2}}, & \text { if } r \notin \mathbb{N}, \quad \beta \geqslant-\frac{r-2}{2} \\ \frac{\lg \lg n}{n^{(r-2) / 2}}, & \text { if } r \in \mathbb{N}, \quad \beta=-r / 2 \\ \frac{(\lg n)^{\beta+r / 2}}{n^{(r-2) / 2}}, & \text { if } r \in \mathbb{N}, \quad \beta>-r / 2\end{cases}
$$

Here $Q_{i, B}(t)=Q_{i, 1_{B}}(t)$ are the polynomials of Theorem 1.

3. Proof of the Results

To prevent the proof of Theorem 1 from becoming too lengthy we try to unify the proof as far as possible for the rather different types of approximation orders $O_{n}(r, \beta)$. Some lemmas which are needed for the proofs of Theorem 1 and Example 2 are given at the end of this section.

Proof of Theorem 1. Let $j \in \mathbb{N} \cup\{0\}$ be fixed. We prove the result for pairs (r, β) with $j(r, \beta)=j$. For $j=0$, we have $r=3, \beta \geqslant-\frac{3}{2}$ and the result is part of Theorem 4 of [3]. We assume therefore that $j \geqslant 1$. We need some conventions and notations. Throughout the proof we use the symbol c to denote a general constant which may depend on r, β, and the distribution of X_{1}. Put $\mathbb{N}_{1}=\left\{2^{i}: i \in \mathbb{N}\right\}, N_{n}=\left\{v \in \mathbb{N}_{1}: v \leqslant n / \lg n\right\}$, and define $k(n)=$ $\max N_{n}, n \geqslant 2$. Let g be a bounded and measurable function, fulfilling condition (*) of Theorem 1. Choose $\sigma\left(X_{1}, \ldots, X_{n}\right)$ measurable functions g_{n} with $E\left(\left|g-g_{n}\right|\right)=d_{1}\left(g, \sigma\left(X_{1}, \ldots, X_{n}\right)\right)$. Put $h_{2}=g_{2}$ and $h_{v}=g_{v}-g_{v / 2}$ for each $v \in \mathbb{N}_{1}, v \geqslant 4$. Then we obtain by assumption ($*$)

$$
\begin{equation*}
E\left(\left|h_{v}\right|\right) \leqslant c \frac{(\lg v)^{\beta}}{v^{(r-2) / 2}}, \quad v \in \mathbb{N}_{1} . \tag{1}
\end{equation*}
$$

We show first two relations which are essential tools for the proof:
(A) $\frac{1}{n^{l+\tau / 2}} \sum_{k(n) \leqslant \nu \in \mathbb{N}_{1}} \nu^{\prime} E\left(\left|h_{v}\right|\left|S_{\nu}\right|^{\tau}\right)=O_{n}(r, \beta)$

$$
\text { if } l+\tau / 2 \leqslant j / 2, l \geqslant 0, \tau \geqslant 0 \text {, and } l, \tau \in \mathbb{R} .
$$

(B) $\frac{1}{n^{l+\tau / 2}} \sum_{\nu \in N_{n}} v^{l} E\left(\left|h_{v}\right|\left|S_{v}\right|^{\tau}\right)=O_{n}(r, \beta)$

$$
\text { if } l+\tau / 2 \geqslant(j+1) / 2, l \geqslant 0,0 \leqslant \tau<r, \text { and } l, \tau \in \mathbb{R} .
$$

$A d(A)$. If $v \geqslant 2,0<\tau<r$, we have by Lemma 4 and (1) for each $\gamma \geqslant \frac{1}{2}$

$$
\begin{align*}
E\left(\left|h_{v}\right|\left|S_{v}\right|^{\tau}\right) & \leqslant c E\left(\left|S_{v}\right|^{\tau} 1_{\left\{\left|S_{v}^{*}\right| \geqslant \sqrt{r-1}\left(\lg v v^{\prime}\right\}\right.}\right)+c v^{\tau / 2}(\lg v)^{\gamma^{\tau}} E\left(\left|h_{v}\right|\right) \\
& \leqslant c v^{\tau / 2-(r-2) / 2}\left((\lg v)^{\gamma(\tau-r)}+(\lg v)^{\gamma \tau+\beta}\right) . \tag{2}
\end{align*}
$$

For $\tau=0$, (2) follows from (1).
Relation (2) implies

$$
\begin{align*}
H(n): & =\frac{1}{n^{I+\tau / 2}} \sum_{k(n) \leqslant \nu \in \mathbb{N}_{1}} v^{\prime} E\left(\left|h_{\nu}\right|\left|S_{\nu}\right|^{\tau}\right) \\
& \leqslant c \frac{1}{n^{I+\tau / 2}} \sum_{k(n) \leqslant \nu \in \mathbb{N}_{1}} v^{I+\tau / 2-(r-2) / 2}\left((\lg v)^{\gamma(\tau-r)}+(\lg v)^{\gamma \tau+\beta}\right) . \tag{3}
\end{align*}
$$

We consider at first the case $l+\tau / 2<(r-2) / 2$. As

$$
\sum_{k(n) \leqslant \nu \in \mathbb{N}_{1}} \frac{1}{v^{\varepsilon}}(\lg v)^{\delta} \leqslant \frac{c}{n^{\varepsilon}}(\lg n)^{\varepsilon+\delta} \quad \text { if } \quad \varepsilon>0
$$

we obtain from (3) with $\gamma=\frac{1}{2}$

$$
\begin{aligned}
H(n) & \leqslant c \frac{1}{n^{(r-2) / 2}}(\lg n)^{(r-2) / 2-(l+\tau / 2)}\left[(\lg n)^{(\tau-r) / 2}+(\lg n)^{\tau / 2+\beta}\right] \\
& =c \frac{1}{n^{(r-2) / 2}}\left[\frac{1}{(\lg n)^{1+l}}+(\lg n)^{\beta+(r-2) / 2-l}\right]=O_{n}(r, \beta)
\end{aligned}
$$

As $l+\tau / 2 \leqslant j / 2 \leqslant([r]-2) / 2 \leqslant(r-2) / 2$ it remains to consider the case $l+\tau / 2=(r-2) / 2$. Hence $j=j(r, \beta)=r-2$, whence $r \in \mathbb{N}, \beta<-r / 2$. Consequently there exists γ with $\frac{1}{2}<\gamma<-(\beta+1) / j=-(\beta+1) /(r-2)$. Then $\gamma(\tau-r)<-1$ and $\gamma \tau+\beta<-1$, and (3) implies

$$
H(n)=o\left(\frac{1}{n^{(r-2) / 2}}\right)=O_{n}(r, \beta) .
$$

$A d(B)$. We obtain from (2) for each $\gamma \geqslant \frac{1}{2}$,

$$
\begin{align*}
L(n) & =\frac{1}{n^{l+\tau / 2}} \sum_{\nu \in N_{n}} v^{l} E\left(\left|h_{v}\right|\left|S_{v}\right|^{\tau}\right) \\
& \leqslant c \frac{1}{n^{l+\tau / 2}} \sum_{v \in N_{n}} v^{l+\tau / 2-(r-2) / 2}\left((\lg v)^{\gamma(\tau-r)}+(\lg v)^{\gamma \tau+\beta}\right) \tag{4}
\end{align*}
$$

We consider the three cases $l+\tau / 2 \leqq(r-2) / 2$:
(i) As $l+\tau / 2 \geqslant(j+1) / 2 \geqslant(r-2) / 2, l+\tau / 2<(r-2) / 2$ is impossible.
(ii) If $l+\tau / 2>(r-2) / 2$, apply (4) with $\gamma=\frac{1}{2}$. Then we obtain using Lemma 5

$$
\begin{aligned}
L(n) & \leqslant c \frac{1}{n^{I+\tau / 2}} n^{l+\tau / 2-(r-2) / 2}\left(\frac{1}{(\lg n)^{1+l}}+(\lg n)^{\beta+(r-2) / 2-l}\right) \\
& \leqslant c \frac{1}{n^{(r-2) / 2}}\left(\frac{1}{\lg n}+(\lg n)^{\beta+(r-2) / 2}\right)=O_{n}(r, \beta)
\end{aligned}
$$

(iii) Finally let $l+\tau / 2=(r-2) / 2$.

Hence $(r-2) / 2=l+\tau / 2 \geqslant(j+1) / 2$, i.e., $j \leqslant r-3$, whence $r \in \mathbb{N}$ and $\beta \geqslant-r / 2$.

Applying (4) with $\gamma=\frac{1}{2}$ we obtain

$$
\begin{equation*}
L(n) \leqslant c \frac{1}{n^{(r-2) / 2}} \sum_{v \in N_{n}}\left(\frac{1}{\lg v}+(\lg v)^{\beta+(r-2) / 2}\right) \tag{5}
\end{equation*}
$$

By Lemma 5 we have $\sum_{v \in N_{n}} 1 / \lg v=O(\lg \lg n)$ and

$$
\sum_{v \in N_{n}}(\lg v)^{\beta+(r-2) / 2}= \begin{cases}O(\lg \lg n), & \text { if } \beta=-r / 2 \\ O\left((\lg n)^{\beta+r / 2}\right), & \text { if } \beta>-r / 2\end{cases}
$$

Hence (5) implies $L_{n}=O_{n}(r, \beta$). Thus (A) and (B) are proven.
Using $1-\Phi(\sqrt{r \lg n})=o\left(1 / n^{(r-2) / 2}\right)$ and similar methods as in the proof of Theorem 1 of [4], it suffices to construct polynomials $Q_{i, g}(t), i=1, \ldots, j$, such that

$$
\begin{equation*}
\sup _{|t| \leqslant \sqrt{r \lg n}}\left|E\left(S_{n}^{*} \leqslant t, g\right)-\Phi(t) E(g)-\varphi(t) \sum_{i=1}^{j} \frac{1}{n^{i / 2}} Q_{i, g}(t)\right|=O_{n}(r, \beta) \tag{6}
\end{equation*}
$$

Since $g=g-g_{k(n)}+\sum_{v \in N_{n}} h_{v}$, we obtain by assumption (*)

$$
\begin{aligned}
\sup _{t \in \mathbb{R}} \mid E\left(S_{n}^{*}\right. & \leqslant t, g)-\sum_{\nu \in N_{n}} E\left(S_{n}^{*} \leqslant t, h_{v}\right) \mid \\
& \leqslant E\left(\left|g-g_{k(n)}\right|\right)=O\left(\frac{1}{(k(n))^{(r-2) / 2}}(\lg k(n))^{\beta}\right) \\
& =O\left(\frac{1}{n^{(r-2) / 2}}(\lg n)^{\beta+(r-2) / 2}\right)=O_{n}(r, \beta) .
\end{aligned}
$$

Hence it suffices to prove that

$$
\begin{align*}
& \sup _{|n| \leqslant \sqrt{r \lg n}}\left|\sum_{v \in N_{n}} E\left(S_{n}^{*} \leqslant t, h_{v}\right)-\Phi(t) E(g)-\varphi(t) \sum_{i=1}^{j} \frac{1}{n^{i / 2}} Q_{i, g}(t)\right| \\
& \quad=O_{n}(r, \beta) \tag{7}
\end{align*}
$$

Let F_{n} be the distribution function of S_{n}^{*} and let

$$
K_{n, j}(t)=\Phi(t)+\varphi(t) \sum_{i=1}^{j} \frac{1}{n^{i / 2}} Q_{i}(t)
$$

be the classical asymptotic expansions. Put $D_{n, j}=F_{n}-K_{n, j}$.
We prove three properties which imply our assertion as we see later:

$$
\begin{aligned}
& \text { (P1) } \sup _{t \in \mathcal{B}}\left|\sum_{v \in N_{n}} \int h_{v}(\omega) D_{n-v, j}\left(\sqrt{\frac{n}{n-v}} t-\frac{1}{\sqrt{n-v}} S_{v}(\omega)\right) P(d \omega)\right| \\
& \quad=O_{n}(r, \beta)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (P2) } \sup _{t \in \mathbb{R}} \mid \sum_{\nu \in N_{n}} \int_{v} h_{v}(\omega) K_{n-v, j}(t) P(d \omega) \\
& \\
& \left.\quad-\Phi(t) E(g)-\varphi(t) \sum_{i=1}^{j} \frac{1}{n^{i / 2}} Q_{i, g}^{(1)}(t) \right\rvert\,=O_{n}(r, \beta) \\
& \text { (P3) } \sup _{|t| \leqslant \sqrt{r \operatorname{Ig} n}} \left\lvert\, \sum_{v \in N_{n}} \int h_{v}(\omega)\left[K_{n-v, j}\left(\sqrt{\frac{n}{n-v}} t-\frac{1}{\sqrt{n-v}} S_{v}(\omega)\right)\right.\right. \\
& \left.\quad-K_{n-v, j}(t)\right] \left.P(d \omega)-\varphi(t) \sum_{i=1}^{j} \frac{1}{n^{i / 2}} Q_{i, g}^{(2)}(t) \right\rvert\,=O_{n}(r, \beta)
\end{aligned}
$$

with suitable polynomials $Q_{i, g}^{(1)}(t), Q_{i, g}^{(2)}(t)$.
$A d(\mathrm{P} 1)$. Since Cramér's condition is fulfilled, we have by the classical asymptotic expansion (see [6, Theorem 2, p. 168]) that

$$
\sup _{y \in \mathbb{R}}\left|D_{n-v, j}(y)\right| \leqslant \begin{cases}c \frac{\varepsilon_{n-v}}{(n-v)^{(r-2) / 2}}, & \text { if } j=[r]-2 \tag{8}\\ \frac{1}{(n-v)^{(r-2) / 2}}, & \text { if } j=r-3\end{cases}
$$

where $\varepsilon_{m} \rightarrow_{m \in \mathbb{N}} 0$. Since $n-v \geqslant n / 2$ for all $v \in N_{n}$ (if $\lg n \geqslant 2$), (8) implies

$$
\begin{equation*}
\sup _{v \in N_{n}, y \in \mathbb{R}}\left|D_{n-v, j}(y)\right|=O_{n}(r, \beta) . \tag{9}
\end{equation*}
$$

Let A_{n} be the expression occurring in (P1). Then (9) and (1) imply

$$
A_{n} \underset{(9)}{\leqslant} \sum_{v \in N_{n}} E\left(\left|h_{v}\right|\right) O_{n}(r, \beta) \underset{(1)}{=} O_{n}(r, \beta)
$$

$\operatorname{Ad}(\mathbf{P} 2)$. By definition of $K_{n-v, j}$, we have

$$
\begin{align*}
& \sum_{v \in N_{n}} \int_{v} h_{v}(\omega) K_{n-v, j}(t) P(d \omega) \\
& \quad=\Phi(t) E\left(g_{k(n)}\right)+\varphi(t) \sum_{v \in N_{n}}\left(E\left(h_{v}\right) \sum_{i=1}^{j} \frac{1}{(n-v)^{i / 2}} Q_{i}(t)\right) \tag{10}
\end{align*}
$$

For $v \in N_{n}, n \in \mathbb{N}$, and $i \leqslant j$, we have

$$
\begin{gathered}
\frac{1}{(n-v)^{i / 2}}=\frac{1}{n^{i / 2}}\left(\sum_{l=0}^{j}\binom{-i / 2}{l}\left(-\frac{v}{n}\right)^{l}+O\left(\left(\frac{v}{n}\right)^{j+1}\right)\right) \\
\text { where } O\left(\frac{v}{n}\right) \leqslant c \frac{v}{n}
\end{gathered}
$$

Hence (10) implies

$$
\begin{aligned}
\sum_{v \in N_{n}} & K_{n-v, j}(t) E\left(h_{v}\right) \\
= & \Phi(t) E\left(g_{k(n)}\right) \\
& +\varphi(t) \sum_{i=1}^{j} \sum_{l=0}^{j}\binom{-i / 2}{l} \frac{1}{n^{i / 2+l}} \sum_{v \in N_{n}}(-v)^{l} E\left(h_{v}\right) Q_{i}(t) \\
& +\varphi(t) \sum_{i=1}^{j} \frac{1}{n^{i / 2}} \sum_{v \in N_{n}} O\left(\left(\frac{v}{n}\right)^{j+1}\right) E\left(h_{v}\right) Q_{i}(t)
\end{aligned}
$$

As $E\left(g_{k(n)}\right)=E(g)+O_{n}(r, \beta),(\mathrm{P} 2)$ is shown if we prove that for $1 \leqslant i \leqslant j$, $0 \leqslant l \leqslant j$,

$$
\begin{align*}
\frac{1}{n^{i / 2+l}} \sum_{v \in N_{n}}(-v)^{l} E\left(h_{v}\right)= & \frac{c}{n^{i / 2+l}}+O_{n}(r, \beta) \\
& \quad \text { for } i / 2+l \leqslant j / 2 \tag{11}\\
\frac{1}{n^{i / 2+l}} \sum_{v \in N_{n}} v^{i} E\left(\left|h_{v}\right|\right)= & O_{n}(r, \beta) \\
& \text { for } i / 2+l>j / 2 . \tag{12}
\end{align*}
$$

Ad (11). As $i / 2+l \leqslant j / 2$ and $i \geqslant 1$, we have $l<j / 2$. Hence (1) applied to $\tau=0$ yields that $\sum_{v \in \mathbb{N}_{1}} v^{l} E\left(\left|h_{v}\right|\right)<\infty$. Put $c=\sum_{v \in \mathbb{N}_{1}}(-v)^{l} E\left(h_{v}\right)$. Then (A) applied to $\tau=0$ yields

$$
\begin{aligned}
\left|\frac{1}{n^{i / 2}+l}\left(\sum_{\nu \in N_{n}}(-v)^{l} E\left(h_{v}\right)-c\right)\right| & \leqslant \frac{1}{n^{i / 2+l}} \sum_{k(n) \leqslant v \in \mathbb{N}_{1}} v^{l} E\left(\left|h_{v}\right|\right) \\
& \leqslant \frac{1}{n^{l}} \sum_{k(n) \leqslant v \in \mathbb{N}_{1}} v^{l} E\left(\left|h_{v}\right|\right)=O_{n}(r, \beta) .
\end{aligned}
$$

Ad (12). (B) applied to $\tau=0$ and $i / 2+l$ instead of l yields

$$
\frac{1}{n^{i / 2+l}} \sum_{v \in N_{n}} v^{l} E\left(\left|h_{v}\right|\right) \leqslant \frac{1}{n^{i / 2+l}} \sum_{v \in N_{n}} v^{i / 2+l} E\left(\left|h_{v}\right|\right)=O_{n}(r, \beta)
$$

$A d(\mathrm{P} 3)$. Let $u:=u_{t, n, v}(\omega)=\sqrt{n /(n-v)} t-(1 / \sqrt{n-v}) S_{\nu}(\omega)=$ $t(f(v / n)+1)-(1 / \sqrt{n-v}) S_{v}(\omega)$, where $f(x)=(1-x)^{-1 / 2}-1=$ $\sum_{p=1}^{\infty}\binom{-1 / 2}{p}(-x)^{p} \leqslant c x$ for $0 \leqslant x \leqslant \frac{1}{2}$.

Hence we have for $v \in N_{n}, n \in \mathbb{N}$,

$$
\left|u_{t, n, v}(\omega)-t\right| \leqslant c\left(|t| \frac{v}{n}+\frac{1}{\sqrt{n}}\left|S_{v}(\omega)\right|\right)
$$

whence

$$
\begin{equation*}
\left|u_{t, n, v}(\omega)-t\right|^{j+1} \leqslant c\left(|t|^{j+1}\left(\frac{v}{n}\right)^{j+1}+\frac{1}{n^{(j+1) / 2}}\left|S_{v}(\omega)\right|^{j+1}\right) \tag{13}
\end{equation*}
$$

By the Taylor expansion we have

$$
\begin{align*}
K_{n-v, j}(u)-K_{n-v, j}(t)= & \sum_{\lambda=1}^{j} \frac{1}{\lambda!} K_{n-v, j}^{(\lambda)}(t)(u-t)^{\lambda} \\
& +\frac{1}{(j+1)!} K_{n-v, j}^{(j+1)}(\xi)(u-t)^{j+1} \tag{14}
\end{align*}
$$

with $\xi=\xi_{t, n, v}(\omega) \in\left[u_{t, n, v}(\omega), t\right]$.
According to (14), property (P 3) is shown if we prove that

$$
\begin{align*}
B_{n}:= & \sup _{|t| \leqslant \sqrt{r \lg n}} \mid \sum_{v \in N_{n}} \int h_{v}(\omega)\left(u_{t, n, v}(\omega)-t\right)^{j+1} \\
& \times K_{n-v, j}^{(j+1)}\left(\xi_{t, n, v}(\omega)\right) P(d \omega) \mid \\
= & O_{n}(r, \beta) \tag{15}
\end{align*}
$$

and that for each $\lambda=1, \ldots, j$ there holds uniformly in $|t| \leqslant \sqrt{r \lg n}$

$$
\begin{gather*}
\sum_{\nu \in N_{n}} K_{n-v, j}^{(\lambda)}(t) \int\left(u_{t, n, v}(\omega)-t\right)^{\lambda} h_{v}(\omega) P(d \omega) \\
\quad=\varphi(t) \sum_{p=1}^{j} \frac{1}{n^{p / 2}} Q_{p, g, \lambda}(t)+O_{n}(r, \beta) \tag{16}
\end{gather*}
$$

with suitable polynomials $Q_{p, g, \lambda}(t)$.
$\operatorname{Ad}(15)$. As $\sup \left\{\left|K_{n-v, j}^{(j+1)}(\xi)\right|: \xi \in \mathbb{R}, \quad n \in \mathbb{N}, \quad v \in N_{n}\right\}<\infty$, we obtain from (13) that

$$
\begin{align*}
B_{n} & \leqslant c \sup _{|t| \leqslant \sqrt{r l g} n} \sum_{v \in N_{n}} \int\left|h_{v}(\omega)\right|\left|u_{t, n, v}(\omega)-t\right|^{j+1} P(d \omega) \\
& \leqslant c \frac{(\lg n)^{(j+1) / 2}}{n^{j+1}} \sum_{v \in N_{n}} v^{j+1} E\left(\left|h_{v}\right|\right) \\
& +\frac{c}{n^{(j+1) / 2}} \sum_{v \in N_{n}} E\left(\left|h_{v}\right|\left|S_{v}\right|^{j+1}\right) \tag{13}
\end{align*}
$$

Hence by (1) and (B)

$$
B_{n} \leqslant c \frac{(\lg n)^{(j+1) / 2}}{n^{j+1}} \sum_{v \in N_{n}} \frac{v^{j+1}}{v^{(r-2) / 2}}(\lg v)^{\beta}+O_{n}(r, \beta)
$$

Consequently by Lemma 5

$$
B_{n} \leqslant c \frac{(\lg n)^{(j+1) / 2}}{n^{(r-2) / 2}}(\lg n)^{\beta-(j+1)+(r-2) / 2}+O_{n}(r, \beta)=O_{n}(r, \beta)
$$

Thus we have (15).
$\operatorname{Ad}(16)$. Let $\lambda \in\{1, \ldots, j\}$ be fixed. We have with suitable polynomials $\hat{Q}_{i}(t)$ that

$$
\begin{align*}
K_{n-v, j}^{(\lambda)}(t) & =\Phi^{(\lambda)}(t)+\sum_{i=1}^{j} \frac{1}{(n-v)^{i / 2}}\left(\varphi \cdot Q_{i}\right)^{(\lambda)}(t) \\
& =\varphi(t) \sum_{i=0}^{j} \frac{1}{(n-v)^{i / 2}} \hat{Q}_{i}(t) \tag{17}
\end{align*}
$$

Furthermore we have by definition of $u_{t, n, v}(\omega)$ and $f(x)$ that

$$
\begin{equation*}
\left(u_{t, n, v}(\omega)-t\right)^{\lambda}=\sum_{\varepsilon=0}^{\lambda}\binom{\lambda}{\varepsilon} t^{\varepsilon} f^{\varepsilon}\left(\frac{v}{n}\right)(-1)^{\lambda-\varepsilon} \frac{1}{(n-v)^{(\lambda-\varepsilon) / 2}} S_{v}^{\lambda-\varepsilon}(\omega) \tag{18}
\end{equation*}
$$

According to (17) and (18), relation (16) is shown if we prove that for each $0 \leqslant i \leqslant j, 0 \leqslant \varepsilon \leqslant \lambda$ uniformly in $|t| \leqslant \sqrt{r \lg n}$,

$$
\begin{aligned}
& \varphi(t) \hat{Q}_{i}(t)\binom{\lambda}{\varepsilon}(-1)^{\lambda-\varepsilon} t^{\varepsilon} \sum_{v \in N_{n}} \frac{f^{\varepsilon}(v / n)}{(n-v)^{(i+\lambda-\varepsilon) / 2}} E\left(h_{v} S_{v}^{\lambda-\varepsilon}\right) \\
& =\varphi(t) \sum_{p=1}^{j} \frac{1}{n^{p / 2}} R_{p}(t)+O_{n}(r, \beta)
\end{aligned}
$$

with suitable polynomials $R_{p}(t)=R_{p, i, \varepsilon, \lambda, g}(t)$.
We have

$$
f^{\varepsilon}\left(\frac{v}{n}\right) \frac{1}{(n-v)^{(\lambda-\varepsilon+i) / 2}}=\frac{1}{n^{(\lambda-\varepsilon+i) / 2}} \frac{(1-\sqrt{1-v / n})^{\varepsilon}}{(1-v / n)^{(\lambda+i) / 2}}
$$

By Taylor expansion we furthermore have

$$
q_{\varepsilon}(x):=q_{\varepsilon, \lambda, i}(x):=\frac{(1-\sqrt{1-x})^{\varepsilon}}{(1-x)^{(\lambda+i) / 2}}=\sum_{l=0}^{j} \frac{q_{\varepsilon}^{(l)}(0)}{l!} x^{l}+O\left(x^{j+1}\right)
$$

Hence for $v \in N_{n}, n \in \mathbb{N}$,

$$
f^{\varepsilon}\left(\frac{v}{n}\right) \frac{1}{(n-v)^{(\lambda-\varepsilon+i) / 2}}=\frac{1}{n^{(\lambda-\varepsilon+i) / 2}}\left[\sum_{l=0}^{j} \frac{q_{\varepsilon}^{(l)}(O)}{l!}\left(\frac{v}{n}\right)^{l}+O\left(\left(\frac{v}{n}\right)^{j+1}\right)\right]
$$

Observe that $q_{\varepsilon}^{(0)}(0)=0$ if $\varepsilon>0$. Consequently (19) is shown if we prove that

$$
\begin{equation*}
\frac{1}{n^{(\lambda-\varepsilon+i) / 2+l}} \sum_{v \in N_{n}} v^{l} E\left(h_{v} S_{v}^{\lambda-\varepsilon}\right)=\frac{c}{n^{(\lambda-\varepsilon+i) / 2+l}}+O_{n}(r, \beta) \tag{20}
\end{equation*}
$$

for $\frac{1}{2} \leqslant(\lambda-\varepsilon+i) / 2+l \leqslant j / 2$ and

$$
\begin{equation*}
\frac{1}{n^{(\lambda-\varepsilon+i) / 2+l}} \sum_{v \in N_{n}} v^{l} E\left(\left|h_{v}\right|\left|S_{v}\right|^{\lambda-\varepsilon}\right)=O_{n}(r, \beta) \tag{21}
\end{equation*}
$$

for $(\lambda-\varepsilon+i) / 2+l>j / 2$. Relation (20) follows from (A) with $c=$ $\sum_{v \in \mathbb{N}_{1}} v^{l} E\left(h_{v} S_{v}^{\lambda-\varepsilon}\right)$. Relation (21) follows from a slight modification of (B). Thus (P 3) is shown.

Now it remains to show that (P 1$)-(\mathrm{P} 3)$ imply the assertion, i.e., we have to prove (7).

Since for $v<n$ the function $\omega \rightarrow F_{n-v}\left(\sqrt{n /(n-v)} t-(1 / \sqrt{n-v}) S_{v}(\omega)\right)$ is a version of $P\left(S_{n}^{*} \leqslant t \mid X_{1}, \ldots, X_{v}\right)$ and since h_{v} is $\sigma\left(X_{1}, \ldots, X_{v}\right)$-measurable we obtain that

$$
E\left(S_{n}^{*} \leqslant t, h_{v}\right)=\int h_{v}(\omega) F_{n-v}\left(\sqrt{\frac{n}{n-v}} t-\frac{1}{\sqrt{n-v}} S_{v}(\omega)\right) P(d \omega)
$$

Hence

$$
\begin{aligned}
& \sum_{v \in N_{n}} E\left(S_{n}^{*} \leqslant t, h_{v}\right) \\
& \quad=\sum_{v \in N_{n}} \int h_{v}(\omega) D_{n-v, j}\left(\sqrt{\frac{n}{n-v}} t-\frac{1}{\sqrt{n-v}} S_{v}(\omega)\right) P(d \omega) \\
& \quad+\sum_{v \in N_{n}} \int h_{v}(\omega)\left[K_{n-v, j}\left(\sqrt{\frac{n}{n-v}} t-\frac{1}{\sqrt{n-v}} S_{v}(\omega)\right)-K_{n-v, j}(t)\right] P(d \omega) \\
& \quad+\sum_{\nu \in N_{n}} \int h_{v}(\omega) K_{n-v, j}(t) P(d \omega) .
\end{aligned}
$$

Thus (P1)-(P3) imply (7) and hence the assertion.
Proof of Example 2. For the case $r=3$ see Example 5 of [2] with $h(n) \equiv 1$ if $\beta=-\frac{3}{2}$ and $h(n)=(\lg n)^{\beta+r / 2}$ if $\beta>-r / 2$.

Therefore we assume $r>3$. The concept for all three cases of this example is the following: Let $t_{0} \in \mathbb{R}$ and $c_{0} \in(0,1]$ be the constants of Lemma 3
 disjoint sets $B_{v} \in \sigma\left(X_{1}, \ldots, X_{v}\right), v \in \mathbb{N}$, with the following properties:
(P1) $B_{v} \subset\left\{\sqrt{\lg v} / 2 \leqslant S_{v}^{*} \leqslant \sqrt{\lg v}\right\}, \quad v \in \mathbb{N}$
(P2) $\sum_{v>n} P\left(B_{v}\right)=O\left(\frac{1}{n^{(r-2) / 2}}(\lg n)^{\beta}\right)$
(P3) $\sum_{v>k(n)} P\left(B_{v}\right)=o\left(\delta_{n}\right), \quad n \in \mathbb{N}$
(P4) $\frac{1}{n^{l+\tau / 2}} \sum_{v>k(n)} v^{l} E\left(\left|S_{v}\right|^{\tau} 1_{B_{v}}\right)=o\left(\delta_{n}\right), n \in \hat{\mathbb{N}}$,

$$
\text { if } l+\tau / 2 \leqslant j / 2, l \geqslant 0, \tau \geqslant 0, l, \tau \in \mathbb{R}
$$

(P5) $\frac{1}{n^{l+\tau / 2}} \sum_{v \leqslant k(n)} \nu^{i} E\left(\left|S_{v}\right|^{\tau} 1_{B_{v}}\right)=o\left(\delta_{n}\right), n \in \mathbb{N}$,

$$
\text { if } l+\tau / 2 \geqslant(j+1) / 2, l \geqslant 0,0 \leqslant \tau \leqslant j, l, \tau \in \mathbb{R}
$$

(P6) $\sum_{v \leqslant k(n)}\left(\frac{\nu \lg v}{n}\right)^{(j+1) / 2} P\left(B_{v}\right) \simeq \tilde{c} \delta_{n}, n \in \hat{\mathbb{N}}$, with suitable $\tilde{c}>0$.

Let us first see whether (P1)-(P6) lead to an example of the desired kind. Put $B=\sum_{v \in \mathbb{N}} B_{v}$. Then by (P2)

$$
d\left(B, \sigma\left(X_{1}, \ldots, X_{n}\right)\right) \leqslant \sum_{v>n} P\left(B_{v}\right)=O\left(\frac{1}{n^{(r-2) / 2}}(\lg n)^{\beta}\right),
$$

i.e., (*) is fulfilled. By (P3) we obtain

$$
\begin{aligned}
P\left(S_{n}^{*}\right. & \left.\leqslant t_{0}, B\right)-\Phi\left(t_{0}\right) P(B) \\
& =\sum_{v \leqslant k(n)}\left(P\left(S_{n}^{*} \leqslant t_{0}, B_{v}\right)-\Phi\left(t_{0}\right) P\left(B_{v}\right)\right)+o\left(\delta_{n}\right), \quad n \in \hat{\mathbb{N}} .
\end{aligned}
$$

Hence, using (P1), Lemma 3 implies that

$$
\begin{align*}
P\left(S_{n}^{*}\right. & \left.\leqslant t_{0}, B\right)-\Phi\left(t_{0}\right) P(B) \\
& =\sum_{i=1}^{j} \frac{\Phi^{(i)}\left(t_{0}\right)}{i!} \sum_{v \leqslant k(n)} \int_{B_{v}}\left(t_{0} f\left(\frac{v}{n}\right)-\frac{S_{v}}{\sqrt{n-v}}\right)^{i} d P+o\left(\delta_{n}\right)+\tilde{\varepsilon}_{n}, \tag{1}
\end{align*}
$$

where by (P6),

$$
\begin{equation*}
\tilde{c}_{1} \delta_{n} \leqslant \tilde{\varepsilon}_{n}=\sum_{v \leqslant k(n)} \varepsilon_{n, v} \leqslant \tilde{c}_{2} \delta_{n}, \quad n \in \hat{\mathbb{N}} \text { large enough }, \tag{2}
\end{equation*}
$$

with suitable $\tilde{c}_{1}, \tilde{c}_{2}<0$.
By similar methods as in the proof of Theorem 1 (where (A) and (B) implied (16)) we obtain from (P4), (P5) that there exist $a_{1}, \ldots, a_{j} \in \mathbb{R}$ such that

$$
\begin{gather*}
\sum_{i=1}^{j} \frac{\Phi^{(i)}\left(t_{0}\right)}{i!} \sum_{v \leqslant k(n)} \int_{B_{v}}\left(t_{0} f\left(\frac{v}{n}\right)-\frac{S_{v}}{\sqrt{n-v}}\right)^{i} d P \\
=\sum_{i=1}^{j} \frac{a_{i}}{n^{i / 2}}+o\left(\delta_{n}\right), \quad n \in \hat{\mathbb{N}} . \tag{3}
\end{gather*}
$$

Now (1)-(3) imply that

$$
\begin{equation*}
P\left(S_{n}^{*} \leqslant t_{0}, B\right)=\Phi\left(t_{0}\right) P(B)+\sum_{i=1}^{j} \frac{a_{i}}{n^{i / 2}}+\varepsilon_{n}, \quad n \in \widehat{\mathbb{N}} \tag{4}
\end{equation*}
$$

where with suitable $c_{3}, c_{4}<0$,

$$
\begin{equation*}
c_{3} \delta_{n} \leqslant \varepsilon_{n} \leqslant c_{4} \delta_{n} \quad \text { for sufficiently large } n \in \hat{\mathbb{N}} . \tag{5}
\end{equation*}
$$

By Theorem 1 we obtain

$$
\begin{equation*}
P\left(S_{n}^{*} \leqslant t_{0}, B\right)=\Phi\left(t_{0}\right) P(B)+\varphi\left(t_{0}\right) \sum_{i=1}^{j} \frac{1}{n^{i / 2}} Q_{i, B}\left(t_{0}\right)+O\left(\delta_{n}\right) \tag{6}
\end{equation*}
$$

Now (4)-(6) yield $a_{i}=\varphi\left(t_{0}\right) Q_{i, B}\left(t_{0}\right), i=1, \ldots, j$, and hence (4), (5) imply the assertion.

Thus it remains to construct $\mathbb{N} \subset \mathbb{N}$ and $B_{v} \in \sigma\left(X_{1}, \ldots, X_{v}\right), v \in \mathbb{N}$, disjoint, fulfilling (P1)-(P6). We distinguish the cases $r \in \mathbb{N}$ and $r \notin \mathbb{N}$.

Case $r \in \mathbb{N}$. Here $j=j(r)=r-3$ and $\beta \geqslant-r / 2$. Since

$$
P\left\{\sqrt{\lg v} / 2 \leqslant S_{v}^{*} \leqslant \sqrt{\lg v}\right\}=\Phi(\sqrt{\lg v})-\Phi(\sqrt{\lg v} / 2) \geqslant \frac{1}{v^{1 / 4}}
$$

for all sufficiently large v, there exist $v_{0} \in \mathbb{N}$ and disjoint $B_{v} \in \sigma\left(X_{1}, \ldots, X_{v}\right)$, $v \geqslant v_{0}$, such that

$$
\begin{array}{ll}
B_{v} \subset\left\{\sqrt{\lg v} / 2 \leqslant S_{v}^{*} \leqslant \sqrt{\lg v}\right\}, & v \geqslant v_{0}, \\
P\left(B_{v}\right)=\frac{1}{v^{r / 2}}(\lg v)^{\beta}, & v \geqslant v_{0} . \tag{8}
\end{array}
$$

Put $B_{v}=\varnothing$ for $v<v_{0}$ and take $\hat{\mathbb{N}}=\mathbb{N}$. Then obviously (P1), (P2) are fulfilled.
$\operatorname{Ad}(\mathrm{P} 3)$. For sufficiently large n we have by (P 2) that

$$
\begin{aligned}
\sum_{v>k(n)} P\left(B_{v}\right) & \leqslant c \frac{1}{(\mathrm{P} 2)} c \\
& \leqslant c \frac{1}{(k(n))^{(r-2) / 2}}(\lg k(n))^{\beta} \\
n^{(r-2) / 2} & (\lg n)^{\beta+(r-2) / 2}=o\left(\delta_{n}\right) .
\end{aligned}
$$

$A d(\mathrm{P} 4)$. Let $l+\tau / 2 \leqslant j / 2=(r-3) / 2$. Then we obtain

$$
\begin{aligned}
& H(n):=\frac{1}{n^{l+\tau / 2}} \sum_{v>k(n)} v^{l} E\left(\left|S_{v}\right|^{\tau} 1_{B_{v}}\right) \\
& \underset{(7)}{\leqslant} \frac{1}{n^{l+\tau / 2}} \sum_{v>k(n)} v^{l}(v \lg v)^{\tau / 2} P\left(B_{v}\right) \\
&=\frac{1}{{ }^{(8)}} n^{l+\tau / 2} \\
& \sum_{v>k(n)} v^{l+\tau / 2-r / 2}(\lg v)^{\beta+\tau / 2}
\end{aligned}
$$

and $l+\tau / 2-r / 2 \leqslant-\frac{3}{2}$ implies

$$
\begin{aligned}
H(n) & \leqslant c \frac{1}{n^{l+\tau / 2}}(k(n))^{l+\tau / 2-r / 2+1}(\lg k(n))^{\beta+\tau / 2} \\
& \leqslant c \frac{1}{n^{(r-2) / 2}}(\lg n)^{\beta+(r-2) / 2-l}=o\left(\delta_{n}\right)
\end{aligned}
$$

$A d$ (P5). Let $l+\tau / 2 \geqslant(j+1) / 2=(r-2) / 2,0 \leqslant \tau \leqslant j$. Then

$$
\begin{aligned}
L(n) & =\frac{1}{n^{l+\tau / 2}} \sum_{v \leqslant k(n)} v^{\prime} E\left(\left|S_{v}\right|^{\tau} 1_{B_{v}}\right) \\
& \leqslant c \frac{1}{(7),(8)} n^{l+\tau / 2} \sum_{2 \leqslant v \leqslant k(n)} v^{l+\tau / 2-\tau / 2}(\lg v)^{\beta+\tau / 2 .}
\end{aligned}
$$

First let $l+\tau / 2=(r-2) / 2$. Since $\tau \leqslant j=r-3$ this implies $l \geqslant \frac{1}{2}$ and hence by a simple calculation

$$
\begin{aligned}
L(n) & \leqslant c \frac{1}{n^{(r-2) / 2}} \sum_{2 \leqslant \nu \leqslant k(n)} \frac{1}{v}(\lg \nu)^{-1 / 2+\beta+(r-2) / 2} \\
& =\left\{\begin{array}{l}
o\left(\frac{\lg \lg n}{n^{(r-2) / 2}}\right): \beta=-r / 2 \\
o\left(\frac{(\lg n)^{\beta+r / 2}}{n^{(r-2) / 2}}\right): \beta>-r / 2
\end{array}\right\}=o\left(\delta_{n}\right) .
\end{aligned}
$$

It remains to consider the case $l+\tau / 2>(r-2) / 2$. Then $l+\tau / 2-r / 2>-$ and we have

$$
\begin{aligned}
L(n) & \leqslant c \frac{1}{n^{l+\tau / 2}}\left((k(n))^{l+\tau / 2-r / 2+1}(\lg k(n))^{\beta+\tau / 2}\right) \\
& \leqslant c \frac{1}{n^{(r-2) / 2}}(\lg n)^{\beta+(r-2) / 2}=o\left(\delta_{n}\right) .
\end{aligned}
$$

Ad (P6). We have by (8)

$$
\begin{aligned}
\sum_{v \leqslant k(n)} & \left(\frac{v \lg v}{n}\right)^{(j+1) / 2} P\left(B_{v}\right) \\
& =\frac{1}{(8)} \sum^{(r-2) / 2} \sum_{v 0 \leqslant v \leqslant k(n)} \frac{1}{v}(\lg v)^{\beta+(r-2) / 2} \\
& \simeq\left\{\begin{array}{ll}
\frac{\lg \lg n}{n^{(r-2) / 2},} & \text { if } \beta=-r / 2 \\
\frac{1}{\beta+r / 2} \frac{(\lg n)^{\beta+r / 2}}{n^{(r-2) / 2}}, & \text { if } \beta>-r / 2
\end{array}\right\}=\tilde{c} \delta_{n}
\end{aligned}
$$

Case $r \notin \mathbb{N}$. Here $j=j(r)=[r]-2$ and $\beta \geqslant-(r-2) / 2$. Put

$$
\tilde{\mathbb{N}}:=\left\{2^{2^{i}}: i \in \mathbb{N}\right\} \quad \text { and } \quad \hat{\mathbb{N}}:=\left\{n \in \mathbb{N}: k(n)=\left[c_{0} \frac{n}{\lg n}\right] \in \tilde{\mathbb{N}}\right\}
$$

Then there exist $v_{0} \in \mathbb{N}$ and disjoint $B_{v} \in \sigma\left(X_{1}, \ldots, X_{v}\right), v \in \mathbb{N}, v \geqslant v_{0}$, suck that

$$
\begin{gather*}
B_{v} \subset\left\{\sqrt{\lg v} / 2 \leqslant S_{v}^{*} \leqslant \sqrt{\lg v}\right\} \\
P\left(B_{v}\right)=\frac{1}{v^{(r-2) / 2}}(\lg v)^{\beta}, \quad v \in \mathbb{N}, v \geqslant v_{0} .
\end{gather*}
$$

Put $B_{v}=\varnothing$ if $v<v_{0}$ or $v \notin \mathbb{N}$. Then obviously (P1), (P2) are fulfilled.
$\operatorname{Ad}(\mathrm{P} 3)$. Let $n \in \hat{\mathbb{N}}$. Then $k(n) \in \mathbb{N}$ and therefore $B_{v}=\varnothing$ if $k(n)<v<$ $k^{2}(n)$. Hence we obtain for sufficiently large $n \in \hat{\mathbb{N}}$

$$
\sum_{v>k(n)} P\left(B_{v}\right)=\sum_{v>n} P\left(B_{v}\right)=o\left(\delta_{n}\right), \quad n \in \mathbb{N}
$$

Ad (P4). Let $l+\tau / 2 \leqslant j / 2=([r]-2) / 2$. We have by (9), (10) that

$$
\begin{aligned}
H(n) & =\frac{1}{n^{l+\tau / 2}} \sum_{v>k(n)} v^{l} E\left(\left|S_{v}\right|^{\tau} 1_{B_{v}}\right) \\
& \leqslant \frac{1}{(9)} \frac{n^{l+\tau / 2}}{} \sum_{v>k(n)} v^{I+\tau / 2}(\lg v)^{\tau / 2} P\left(B_{v}\right) \\
& \leqslant \frac{1}{(10)} \frac{n^{l+\tau / 2}}{} \sum_{v>k(n), v \in \mathbb{N}} v^{l+\tau / 2-(r-2) / 2}(\lg v)^{\tau / 2+\beta} .
\end{aligned}
$$

Let $n \in \hat{\mathbb{N}}$. Then $v>k(n), v \in \tilde{\mathbb{N}}$, implies $v \geqslant k^{2}(n) \geqslant k(n) \lg k(n)$. As $l+\tau / 2-(r-2) / 2<0$ we consequently obtain for sufficiently large $n \in \hat{\mathbb{N}}$

$$
\begin{aligned}
H(n) & \leqslant c \frac{1}{n^{l+\tau / 2}}(k(n) \lg k(n))^{l+\tau / 2-(r-2) / 2}(\lg n)^{\beta+\tau / 2} \\
& \leqslant c \frac{1}{n^{(r-2) / 2}}(\lg n)^{\beta+\tau / 2} \\
& =o\left(\frac{1}{n^{(r-2) / 2}}(\lg n)^{\beta+(r-2) / 2}\right)=o\left(\delta_{n}\right), \quad n \in \hat{\mathbb{N}} .
\end{aligned}
$$

$A d$ (P5). Let $l+\tau / 2 \geqslant(j+1) / 2=([r]-1) / 2$ and $0 \leqslant \tau \leqslant j$. We have

$$
\begin{aligned}
L(n) & :=\frac{1}{n^{l+\tau / 2}} \sum_{v \leqslant k(n)} v^{l} E\left(\left|S_{v}\right|^{\tau} 1_{B_{v}}\right) \\
& \leqslant \frac{1}{(9),(10)} n^{l+\tau / 2} \sum_{v 0 \leqslant v \leqslant k(n), v \in \mathbb{\mathbb { N }}} v^{l+\tau / 2-(r-2) / 2}(\lg v)^{\beta+\tau / 2} .
\end{aligned}
$$

As $l+\tau / 2 \geqslant([r]-1) / 2>(r-2) / 2$ and as $k(n) \in \widetilde{\mathbb{N}}$ for all $n \in \hat{\mathbb{N}}$, we obtain for all sufficiently large $n \in \mathbb{N}$

$$
\begin{aligned}
L(n) & \leqslant c \frac{1}{n^{l+\tau / 2}}(k(n))^{l+\tau / 2-(r-2) / 2}(\lg k(n))^{\beta+\tau / 2} \\
& \leqslant c \frac{1}{n^{(r-2) / 2}}(\lg n)^{\beta+(r-2) / 2-1} .
\end{aligned}
$$

As $l+\tau / 2>j / 2$ and $\tau \leqslant j$, we have $l>0$. Therefore

$$
L(n)=o\left(\frac{1}{n^{(r-2) / 2}}(\lg n)^{\beta+(r-2) / 2}\right)=o\left(\delta_{n}\right), \quad n \in \hat{\mathbb{N}} .
$$

$\operatorname{Ad}($ P6). Since $j+1>r-2$, we obtain by (10) for all $n \in \widehat{\mathbb{N}}$

$$
\begin{aligned}
\sum_{v \leqslant k(n)} & \left(\frac{v \lg v}{n}\right)^{(j+1) / 2} P\left(B_{v}\right) \\
& =\frac{1}{(10)} n^{(j+1) / 2} \sum_{v_{0} \leqslant v \leqslant k(n), v \in \mathbb{N}} v^{(j+1) / 2-(r-2) / 2}(\lg v)^{\beta+(j+1) / 2} \\
& \simeq \frac{1}{n^{(j+1) / 2}}(k(n))^{(j+1) / 2-(r-2) / 2}(\lg k(n))^{\beta+(j+1) / 2} \\
& \simeq \tilde{c} \frac{1}{n^{(r-2) / 2}}(\lg n)^{\beta+(r-2) / 2}=\tilde{c} \delta_{n}, \quad n \in \hat{\mathbb{N}}
\end{aligned}
$$

with $\tilde{c}:=c_{0}^{(j+1) / 2-(r-2) / 2}$.

Lemma 3. Let $X_{n}, n \in \mathbb{N}$, be i.i.d. $N(0,1)$-distributed. Let $j \in \mathbb{N}$ and put $f(x)=(1-x)^{-1 / 2}-1$.

Then there exist $t_{0} \in \mathbb{R}, c_{0} \in(0,1]$ such that for all sufficiently large $n \in \mathbb{N}$, all $v \leqslant c_{0} n / \lg n$, and all $B_{v} \in \sigma\left(X_{1}, \ldots, X_{v}\right)$ with $B_{v} \subset\left\{\sqrt{\lg v} / 2 \leqslant S_{v}^{*} \leqslant \sqrt{\lg v}\right\}$,

$$
\begin{aligned}
P\left(S_{n}^{*}\right. & \left.\leqslant t_{0}, B_{v}\right)-\Phi\left(t_{0}\right) P\left(B_{v}\right) \\
& =\sum_{i=1}^{j} \frac{\Phi^{(i)}\left(t_{0}\right)}{i!} \int_{B_{v}}\left(t_{0} f\left(\frac{v}{n}\right)-\frac{S_{v}}{\sqrt{n-v}}\right)^{i} d P+\varepsilon_{n, v}
\end{aligned}
$$

holds, where for suitable $c_{1}, c_{2}<0$,

$$
c_{1}\left(\frac{v \lg v}{n}\right)^{(j+1) / 2} P\left(B_{v}\right) \leqslant \varepsilon_{n, v} \leqslant c_{2}\left(\frac{v \lg v}{n}\right)^{(j+1) / 2} P\left(B_{v}\right) .
$$

Proof. It is easy to see that there exists $t_{0} \geqslant 1$ with

$$
\begin{equation*}
(-1)^{j+1} \Phi^{(j+1)}\left(t_{0}\right)<0 \tag{1}
\end{equation*}
$$

Since $\omega \rightarrow \Phi\left(t_{0} \sqrt{n /(n-v)}-S_{v}(\omega) / \sqrt{n-v}\right)$ is a version of $P\left(S_{n}^{*} \leqslant\right.$ $\left.t_{0} \mid X_{1}, \ldots, X_{v}\right), v<n$, and since $B_{v} \in \sigma\left(X_{1}, \ldots, X_{v}\right)$ we obtain

$$
\begin{align*}
P\left(S_{n}^{*}\right. & \left.\leqslant t_{0}, B_{v}\right)-\Phi\left(t_{0}\right) P\left(B_{v}\right) \\
& =\int_{B_{v}}\left(\Phi\left(t_{0} \sqrt{\frac{n}{n-v}}-\frac{S_{v}}{\sqrt{n-v}}\right)-\Phi\left(t_{0}\right)\right) d P \tag{2}
\end{align*}
$$

By the Taylor expansion we have

$$
\begin{align*}
\Phi(u) & -\Phi\left(t_{0}\right) \\
& =\sum_{i=1}^{j} \frac{\Phi^{(i)}\left(t_{0}\right)}{i!}\left(u-t_{0}\right)^{i}+\frac{1}{(j+1)!}\left(u-t_{0}\right)^{j+1} \Phi^{(j+1)}(\xi) \tag{3}
\end{align*}
$$

with $\xi \in\left[u, t_{0}\right]$. Put $u=u_{v, n}(\omega)=t_{0} \sqrt{n /(n-v)}-(1 / \sqrt{n-v}) S_{v}(\omega)$; then

$$
\begin{equation*}
u-t_{0}=t_{0} f\left(\frac{v}{n}\right)-\frac{S_{v}}{\sqrt{n-v}} \tag{4}
\end{equation*}
$$

Hence (2)-(4) imply the assertion if we prove that the stated inequality for $\varepsilon_{n, v}$ is fulfilled with

$$
\begin{aligned}
\varepsilon_{n, v}= & \frac{1}{(j+1)!} \int_{B_{v}}\left(u-t_{0}\right)^{j+1} \Phi^{(j+1)}(\xi) d P \\
= & \frac{1}{(j+1)!} \sum_{l=0}^{j+1}\binom{j+1}{l} \int_{B_{v}}\left(t_{0} f\left(\frac{v}{n}\right)\right)^{l} \\
& \times(-1)^{j+1-l}\left(\frac{S_{v}}{\sqrt{n-v}}\right)^{j+1-t} \Phi^{(j+1)}(\xi) d P
\end{aligned}
$$

where $\xi=\xi_{v, n}(\omega) \in\left[u_{v, n}(\omega), t_{0}\right]$. As $S_{v}(\omega) \leqslant \sqrt{v \lg v}$ for each $\omega \in B_{v}$ we obtain for all $1 \leqslant l \leqslant j+1, v \leqslant n / \lg n$

$$
\begin{aligned}
& \left|\int_{B_{v}}\left(t_{0} f\left(\frac{v}{n}\right)\right)^{l}\left(\frac{S_{v}}{\sqrt{n-v}}\right)^{j+1-l} \Phi^{(j+1)}(\xi) d P\right| \\
& \quad \leqslant c\left(\frac{v}{n}\right)^{l} \frac{1}{n^{(j+1-l) / 2}} \int_{B_{v}}\left|S_{v}\right|^{j+1-l} d P \\
& \quad \leqslant c \frac{1}{n^{(j+1) / 2}} \frac{v^{l}}{n^{l / 2}}(v \lg v)^{(j+1-l) / 2} P\left(B_{v}\right) \\
& \quad \leqslant c\left(\frac{v \lg v}{n}\right)^{(j+1) / 2} P\left(B_{v}\right)\left(\frac{v}{n}\right)^{l / 2} \\
& \quad \leqslant c\left(\frac{v \lg v}{n}\right)^{(j+1) / 2} P\left(B_{v}\right)\left(\frac{1}{\lg n}\right)^{l / 2}
\end{aligned}
$$

Hence the stated inequality for $\varepsilon_{n, v}$ holds, if there exist $0<c_{0} \leqslant 1$ and $c_{3}, c_{4}<0$ such that for all sufficiently large n and all $v \leqslant c_{0}(n / \lg n)$,
$c_{3}\left(\frac{\nu \lg v}{n}\right)^{(j+1) / 2} P\left(B_{v}\right)$

$$
\begin{equation*}
\leqslant \int_{B_{v}}\left(\frac{S_{v}}{\sqrt{n-v}}\right)^{j+1}(-1)^{j+1} \Phi^{(j+1)}(\xi) d P \leqslant c_{4}\left(\frac{v \lg v}{n}\right)^{(j+1) / 2} P\left(B_{v}\right) \tag{5}
\end{equation*}
$$

To prove (5) choose $\delta_{0}>0$ and $c_{5}, c_{6}<0$ such that

$$
\begin{equation*}
c_{5} \leqslant(-1)^{j+1} \Phi^{(j+1)}(\xi) \leqslant c_{6} \quad \text { for all } \xi \in\left[t_{0}-\delta_{0}, t_{0}+\delta_{0}\right] . \tag{6}
\end{equation*}
$$

This is possible according to (1). As $B_{v} \subset\left\{\sqrt{\lg v} / 2 \leqslant S_{v}^{*} \leqslant \sqrt{\lg v}\right\}$ it is easy to see that there exist $c_{0} \in(0,1], n_{0} \in \mathbb{N}$ such that

$$
u_{v, n}(\omega)=t_{0} \sqrt{\frac{n}{n-v}}-\frac{S_{v}(\omega)}{\sqrt{n-v}} \in\left[t_{0}-\delta_{0}, t_{0}+\delta_{0}\right]
$$

and hence

$$
\begin{equation*}
\xi_{v, n}(\omega) \in\left[t_{0}-\delta_{0}, t_{0}+\delta_{0}\right] \tag{7}
\end{equation*}
$$

for all $\omega \in B_{v}, n \geqslant n_{0}$, and $v \leqslant c_{0}(n / \lg n)$. Now (6) and (7) imply (5). This finishes the proof of the assertion.

Lemma 4. Let $X_{n} \in \mathscr{L}_{r}, n \in \mathbb{N}$, be i.i.d. with $E\left(X_{n}\right)=0$ and $E\left(X_{n}^{2}\right)=1$. Let $r \geqslant 3$; then we have for all $\gamma \geqslant \frac{1}{2}$ and $0<\tau<r$

$$
E\left[\left|S_{m}\right|^{\tau} 1_{\left\{\left|S_{m}^{*}\right| \geqslant \sqrt{r-1}(\lg m)^{\gamma}\right\}}\right] \leqslant c m^{\tau / 2-(r-2) / 2}(\lg m)^{\gamma(\tau-r)}
$$

with a suitable constant $c>0$.

Proof. We have

$$
\begin{aligned}
E\left[\left|S_{m}\right|^{\tau}\right. & \left.1_{\left\{\left|S_{m}^{*}\right| \geqslant \sqrt{r-1}(\lg m)^{\gamma}\right\}}\right] \\
= & {\left[(m(r-1))^{1 / 2}(\lg m)^{\gamma}\right]^{\tau} } \\
& \times E\left[\left|\frac{\left|S_{m}\right|}{\sqrt{m(r-1)}(\lg m)^{\gamma}}\right|^{\tau} 1_{\left\{\mid S_{m} / \sqrt{m(r-1)}\right.}^{\left.\left.(\lg m)^{\gamma}\right|^{\tau} \geqslant 1\right\}}\right] \\
\leqslant & c m^{\tau / 2}(\lg m)^{\gamma \tau} \sum_{k \in \mathbb{N}} P\left\{\left|\frac{S_{m}}{\sqrt{m(r-1)}(\lg m)^{\gamma}}\right|^{\tau} \geqslant k\right\} \\
\leqslant & c m^{\tau / 2}(\lg m)^{\gamma \tau} \sum_{k \in \mathbb{N}} P\left\{\left|S_{m}^{*}\right| \geqslant k^{1 / \tau} \sqrt{r-1}(\lg m)^{\gamma}\right\} \\
\leqslant & c m^{\tau / 2}(\lg m)^{\gamma \tau} \sum_{k \in \mathbb{N}} \frac{1}{m^{(r-2) / 2}} \frac{1}{k^{r / \tau}(\lg m)^{\gamma r}} \\
\leqslant & c m^{\tau / 2-(r-2) / 2}(\lg m)^{\gamma(\tau-r)},
\end{aligned}
$$

where (*) follows from Theorem 2 of [5] or from Corollary 17.12 of [1].
Lemma 5. Let $\mathbb{N}_{1}=\left\{2^{v}: v \in \mathbb{N}\right\}$ and $N_{n}=\left\{v \in \mathbb{N}_{1}: v \leqslant n / \lg n\right\}$. Then

$$
\sum_{v \in N_{n}} v^{\varepsilon}(\lg v)^{\gamma}=\left\{\begin{array}{lll}
O\left(n^{\varepsilon}(\lg n)^{\gamma-\varepsilon}\right), & \varepsilon>0, & \gamma \in \mathbb{R} \\
O\left((\lg n)^{\gamma+1}\right), & \varepsilon=0, & \gamma>-1 \\
O(\lg \lg n), & \varepsilon=0, & \gamma=-1 \\
O(1), & \varepsilon=0, & \gamma<-1
\end{array}\right.
$$

References

1. R. N. Bhattacharya and R. R. Rao, "Normal Approximation and Asymptotic Expansions," Wiley, New York, 1976.
2. D. Landers and L. Rogge, Exact approximation orders in the conditional central limit theorem, Z. Wahrsch. Verw. Gebiete 66 (1984), 227-244.
3. D. Landers and L. Rogge, Uniform normal approximation orders for families of dominated measures, J. Approx. Theory 45 (1985), 99-121.
4. D. Landers and L. Rogge, Second-order approximation in the conditional central limit theorem, Ann. Probab. 14 (1986), 313-325.
5. R. Michel, Nonuniform central limit bounds with applications to probabilities of deviations, Ann. Probab. 4 (1976), 102-106.
6. V. V. Petrov, "Sums of Independent Random Variables," Springer-Verlag, Berlin/ New York, 1975.
