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Let X, ne N, be iid. with mean 0, variance 1, and E(| X,|") < oo for some r= 3.
Assume that Cramér’s condition is fulfilled. We prove that the conditional
probabilities  P( 1/\/;; I X;<t|B) can be approximated by a modified
Edgeworth expansion up to order o(1/n~%7), if the distances of the set B from the
o-fields o(X,, .., X,) are of order O(1/n"" =272 (1g n)?), where < —(r—2)/2 for
réN and f < —~r/2 for re N. An example shows that if we replace f < — (r —2)/2
by f= —(r—2)2forré N (< —r/2 by f= —r/2 for r € N) we can only obtain the
approximation order O(1/n"~?72) for r¢ N (O(lglgn/m" =7} for reN).  © 19%0
Academic Press, Inc.

1. INTRODUCTION AND NOTATIONS

Let X, ne N, be a sequence of iid. real valued random variables with
mean 0 and variance 1. Put S,=Y7_, X; and 5= 1/\/; 27, X,. Denote
by d(B, (X, .., X,,)) := inf{P(B A B,): B,eo(X,, ..., X,)} the distance of
the set B from the o-field o(X,, .., X,). In this paper we look for
Edgeworth expansions of the conditional probabilities P(S}<1|B). If

E(|X(|I")< oo for some r>3 and if Cramér’s condition is fulfilled, ie,
lim, _ ., | E(e"*")] <1, then we have (for B= (2) the well-known expansion

12 g 1
sup | P(SF<n)—B(0)—0(t) ¥ -;,—ZQi(z)]:o(-m,—/z—)
reR im1 n n
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(see, e.g., Theorem 2, p. 168 of Petrov [6]). Here @ denotes the standard
normal distribution function and ¢ its density.

Q,(t) are the classical polynomials and [x]=max{neN:n<x}. For
more general sets B there exists only one expansion result (see [4]). This
result deals with the case r =4 and uses one correcting term. It was shown
in [4] that d(B, 6(X,, .., X,,)) = O(1/n(lg n)?) for some f < —2 implies that

0.5 _ (4)
n

sup P(S;?SHB)“(D(I)—QDU) ’1/2
teR n
with Ql’ #(8)=0(t)—a, where a is a constant depending on B and the
distribution of X,.
Tn this paper we give higher order asymptotic expansions for
P(S¥<¢|B). We prove that

d(B,o(X,, .., X,))=0 (;(7}—2)/—2 (lg n)/’>

implies that there exist polynomials 0 ;. 8(t) such that uniformly in e R,

-2 4
|P(S,’,"<t{B)—¢(t)_(p(t) 5 0, 5(t)
i=1

ni/2
1 r—2
f"(;:z—)ﬁ)’ réN, p<-—
(Ign)f +o—27 r—2
0( W22 )a ré¢N, p>-— 2
1
={ o\ =27 ) reN, f<—r/2
Igign
0(;(7_—2)/—2>, reN, /)’=—r/2
(lgn),8+r/2
kO( oy ), reN, B> —r/2

(see Theorem 1 with g=1,).
This result shows a surprising difference between the cases reN and
r ¢ N. Nevertheless all approximation orders are optimal (see Example 2).

2. THE RESULTS

In this section we present our results, postponing the proofs until
Section 3.
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If g is a measurable function we denote by
di(g, o(X,, ... X)) :=inf{E() g —h]): his 6(X,, .., X,) measurable }

the || |,-distance of g from the subspace of all integrable o(X,,.., X,)
measurable functions. We write E(S <7, g) instead of E(g-1 (st <)

The following theorem is the main result of this paper.

Since @(2)(1/n'ID2) Q5 [(£)=0,(r, B) for the last two cases of
this theorem (ie., for re N, > —r/2) we omit in these cases the last term
of the expansion. Hence we consider in these cases the expansion up to the
{r—3) th term only. Observe that all convergence orders O,(r, 3} are
optimal (see Example 2).

THEOREM 1. Let r23 and let X,,neN, be iid with E(X;)=0,

E(X3 =1, and E(|X,|"y< 0. Assume that Cramér’s condition is fulfilled.
Let g be a bounded measurable function, let B € R, and assume that

1
(8. (X1 X)) =0 (s g ). (*

Then there exist polynomials Q; () (the coefficients depend on g and on the
distribution of X|) such that

i B q
sup | E(SF<t,g)—®(1) E(g)— o(1) Z 7 Qis1)] = 0,1, ),
where
[r1-2, if r¢NorreN, B<—r/2
it B)y= { -3, if reN, Bz —rf2
and
1 -2 .
fo(ﬁ) N p<-22 )
lg n)8+ (=202 _2 )
0((gzz, 272 )z if ré¢N, ﬁ>*r2 (i1)
On(r7ﬂ)=<0(n(r 2)/2), if reN, f<—r2 (iif)
o(rftg,lgzifz), if reN, f=—r2  (v)
1 ﬁ+r/2
kO((i(’j - )’ if reN, f>-—r/2 (v)
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Remark. The polynomials Q, ,(f) of Theorem 1 can be computed alon
the lines of the proof of Theorem 1. We have, e.g.,

Ql,g(t) =Q,(t) E(g) —a,
0,.,(1)=0,(1) E(g) + GE(X}) a, — 3a,) t — ga, E(X3) 17,

where a,, a, are constants depending on g and on the distribution of X
For Q, ,(¢) see also Theorem 1 of [47].

The following example shows that the approximation orders give
in Theorem ! are optimal. It is well known that even if g=1,-
whence d,(g, 6(X, ..., X,,)) = 0—the approximation orders o(1/a""~2/2)
Theorem 1 (i, case(i) and case{iii)) cannot be improved. Therefos
Example 2 deals with the remaining three cases. Always we choos
g=1; with a suitable set B. Observe that d,(lg, a(X, ., X,))%
d(B, a(X1, ..., X)) (this can be shown, e.g., by using the Fubini Theorem

ExaMmpLE 2. Let X, ne N, be iid. N(0, 1)-distributed. Let r =3, el
Then there exist Beo(X,:neN) and t,e R, ¢ >0, such that

1
AB,0(Xs, e X)) =0 (s g’ (-
and
S
E(S¥<to, B)—®(1,) P(B)~ o(to) 3, 7 Qisfo)| = €0,
i=1
for infinitely many ne N, where
o f[r1-2, r¢N
J—J(r)—{r—?,, reN
and
((gn)f+ -2 : r—2
nr=272 ’ if Y¢N, BB - P
J lglgn .
5n=5n(r7ﬁ)=< R —272° if reN, f=-—r/2
(lg n)ﬂ+r/2 .
&—-;(:2—)72—, if reN, B> —r/2.

Here @, 5(1)= @, ,,(¢) are the polynomials of Theorem 1.
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3. PROOF OF THE RESULTS

To prevent the proof of Theorem | from becoming too lengthy we try to
unify the proof as far as possible for the rather .different types of
approximation orders Q,(r, #). Some lemmas which are needed for the
proofs of Theorem 1 and Example 2 are given at the end of this section.

Proof of Theorem 1. Let je Nu {0} be fixed. We prove the result for
pairs (r, B) with j(r, B)=j. For j=0, we have r=3, 8> —2 and the result
is part of Theorem 4 of [3]. We assume therefore that j = 1. We need some
conventions and notations. Throughout the proof we use the symbol ¢ to
denote a general constant which may depend on r, §, and the distribution
of Xi. Put N;={2":7eN}, N,={veN,:v<n/lgn}, and define k(n)=
max N,, n22. Let g be a bounded and measurable function, fulfilling
condition (*) of Theorem 1. Choose o(X}, ..., X,,) measurable functions g,
with E(| g—g,l)=d(g o(X,, .., X,)). Put h,=g, and h,=g,—g,, for
each ve N, v 4. Then we obtain by assumption {*)

Ig v)? ,
E(hD<e (BT ven (1)

We show first two relations which are essential tools for the proof:

(&) s T VEIRIIS)=0,0,8)

k(n)<veN|

ifl+12<j2,120,t20,andl, 7€ R

1
(B) ~= Y VE(h1S,17)=0,r,B)

ve N,
ifl+122(+1)/2,[20,0<t<r, and 1R

Ad (A4). Tv>2 0<t<r, we have by Lemma 4 and (1) for each y> 3
E(1h)[S,17) < CE(S, " 155 T agory) + v g vY" E(1A,])
SevPmUD2 (g vy T+ (Igv)THF). (2)

For 1=0, (2) follows from (1).
Relation (2) implies

Hin) =iz T VE(RIISI)

k{n)<veN;

i
Semp X VIRTOTER(g vyt + (IgvyTA) (3)

n k(n)<ve N
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We consider at first the case /+1/2 < (r—2)/2. As

Y ;lz(lgv)6<%(lgn)”‘s if £>0

k(n)<ve Ny

we obtain from (3) with y=3

H(n) < 671_2_)/3 (lg n)(r-Z)/2~ (+1/2) [(1g n)(r—r)/z + (lg n)r/2+ﬁ]
n

{ 1 o
=Cn(,._2)/2[(lgn)1+,+(lgn)"+( R ’]=0n(",ﬁ)‘

As 1+7/2<j2<([r]—2)/2<(r—2)/2 it remains to consider the case
[+1/2=(r—2)/2. Hence j=Jj(r, f)=r—2, whence re N, < —r/2. Conse-

quently there exists y with J<y< —(B+1)/j= —(B+1)/(r—2). Then
y(t—ry< ~1 and yt+ f < —1, and (3) implies

H
HO) =0 (=575 = 0,1 ).

Ad (B). We obtain from (2) for each y>1,

1
Ln)=—r Y. VE(IAI1S,17)

ve N,

1

Se—o X VERTOP(g vy 4 (g ). (@)
ve Ny

We consider the three cases /+1/2= (r — 2)/2:

(i) Asl+12=2(+1)2=(r~2)/2, 1+1/2<(r—2)/2 is impossible.

(i) If I+1/2>(r—2)/2, apply (4) with y=4. Then we obtain using
Lemma §

1 I+1/2—(r—2)/2 1 B+(r—2)2-1
L(ﬁ)<0n1+1/2n N ¢ ) (lgn)1+l+(lgn) Fr=2r

1 1
<c——(— 4 Qgn)f+re=22\=0 (1, B).
€25 (lgn+(gn) ) (1> B)
(iii) Finally let /+ /2= (r — 2)/2.

Hence (r—2)2=I1+7/22(j+1)/2, ie, j<r—3, whence reN and
B=—r/2
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Applying (4) with y =1 we obtain

1
Ln)<c 272 )

veN,

1
(Algv+(lgv)ﬁ+(r~2)/2). (5)
By Lemma 5 we have 3", 1/lgv=0(lglgn) and

sri—2y2_ | Olglgn), if f=—r/2
2 (gv) “{omgn)ﬂ“/z), if f>—r/2

ve N,
Hence (5} implies L, = 0,(r, f). Thus (A) and (B) are proven.

Using 1 — &(/rlgn)=o0(1/n"~2?) and similar methods as in the proof
of Theorem 1 of [4], it suffices to construct polynomials Q; Ao i=1, .7
such that

sup
s Jrign

Since g =g — gxn) + Lven, f1v» WE obtain by assumption ()

1
B(S1<1,6)~ ) Elg)~0(1) T =2 0l0)| =0, 1 (6
i=1

E(S¥<t,g)— ). E(S¥<th,)

ve N,

sup
reR

1
Ty e k(n))ﬁ)

<E(l g~ giwl)=0 ((k(n)

1
=0 (s e 2] = 0,1, .

Hence it suffices to prove that

sup

l1j</rign
=0,(r, B). (7)

Let F, be the distribution function of S$}* and let

Y, E(S¥<t h)—2(1) E(g) - o(1) i ;172‘ Qis(1)

veN, i=1

Ko, (0)= 80+ 0() § 0,0
i=1

be the classical asymptotic expansions. Put D, ;=F,— K, ;.
We prove three properties which imply our assertion as we see later:

ZN fhv(w)Dn,v,j(\/;l—”—jtu\/g__vsv(w)> P(dw)

=0,(r, )

(P1) sup

te®
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(®2) sup| 3 [ m(@) K, _, ;1) Plder)
—®(1) B(g) - <p(t)z 42 000| = 0,45, )
®) s |5 [hio)] K \/n——f—;r— f—sv(w))
1< /rign 1veN, n—vy

Kn,v,j(t)] (dw)—q)(t)z ,/ZQ‘z’(t)l 0,(r, B)

with suitable polynomials 0{')(¢), Q©)(1).

Ad (P1). Since Cramér’s condition is fulfilled, we have by the classical
asymptotic expansion (see [6, Theorem 2, p. 168]) that

Sn—v . .
c————(n——v)(’*z’/z’ if j=[r]-2
sup (D, (1)) < 1
yeR ¢ )
(n _ v)(r—2)/2’

(®)
if j=r—3,

where ¢, —,,.n 0. Since n—v=n/2 for all ve N, (if Ig n>2), (8) implies

sup | D, ;(y)l = Ou(r, B). )

veN,, yeR

Let A, be the expression occurring in (P1). Then (9) and (1) imply
< ) E(lh ) 04, ﬁ) O,(r, B).
veN,

Ad (P2). By definition of K, _, ;, we have

v, J

Z J.hv(w) Kn—v,j(l) P(d(,())

ve Ny

= (1) E(gon) + 0() 3. (E(h ) z ),/ZQ (t)) (10)

ve N,

Forve N,, ne N, and i<, we have

e U CR ()]
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Hence (10) implies
Z Kn—v,j(t) E(hv)

ve Ny
— B(1) Ege)
1
+ (1) Z Z( l/2> 2+ 1 z _V)! E(h,) Q1)
+rpu)z Ly 0(( ) )E(hv)Q,-(t)-

As E(gim) = E(g)+ O,(r, B), (P2) is shown if we prove that for 1 <i<},
0<I<),

z/2+[ Z ("v) E(h) 1/§+1+0n(r: ﬁ)

ve Ny

for i24+1<j/2 (11)

z/2+1 Z [E(,hv’)zon(r’ﬁ)

ve N,

for 2+1>j/2. (12}

Ad(11). As i2417<j/2 and i= 1, we have /<j/2. Hence (1) applied to
t=0yields that ¥, o V'E(h,|)<o0. Putc=3", _, (—v) E(h,). Then (A)
applied to t =0 yields

(T (- Em) )<

ve N,

1
1/2+1 Z VIE(‘hv[)

k(n)y<veNy

1
<~1 Z v[E”hvl)zgn(rsﬁ)‘

k(n)<veN)

Ad(12). (B) applied to t=0 and i/2 +/ instead of / yields

,/2+1 Y VE(h S =5 ,/2+1 Y VPHE(R ) =0, B).

ve Ny ve N,
Ad(P3). Let u := u,, (@) = mt — (//n = V) S, (@) =
(fv/n) + 1) — (1/3/n — v) S,(w), where f(x) = (1 —x) > -1 =
(T =x)P<cxfor 0<x<3
Hence we have for ve N, neN,

(@) — 1] <c(m ;1”-+—\1[—n lSv(w)i>,

640/63/3-2
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whence
) . A 1 A
st =1 e (100 () b s ). 13
By the Taylor expansion we have

L1
K, ;) =K, ()= ¥ K2, (Ou—1)
A=

LA
+G;rl—m1<;frv{}(o(u—t)f“ (14)

with {=¢, , (o) € [u,,, (@), 1].
According to (14), property (P3) is shown if we prove that

Y | h@) )~ 1y

ve Np

B,:= sup
It <{/rlgn

K KY*D(E, () P(dw)]

n—v,j

=0,(r, f) (15)

and that for each A= 1, ..., j there holds uniformly in |¢| <./rlgn

Y KD 0) [ @)~ 1) () P(do)

S 1
—'——"QD(I) Z —nm Qp,g,l(t)-l'on(rﬂ ﬁ) (16)
1

o
with suitable polynomials @, . ,(¢).

Ad(15). As sup{|KY* (&) :¢eR, neN, veN,} <o, we obtain
from (13) that

B,<c sup ¥ [1Af0) luym(@)— 117 P(do)
lt|<\/f—18_n ve N,

(g m)V+ 12 '
S5 2 VUE(AD
ve Ny,
[ .
+grnn o Elh]LS, 1. (13)

ve N,
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Hence by (1) and (B)

(1gn)(j+1)/2 v]+1
B,<c 0 3 g (1) + 0,0 )

veN,,

Consequently by Lemma 5

(1gn)(j+ 1y2 .
B, S ey (gnf "N 0,(r )= 0,1, )
Thus we have (15).

_Ad(16). Let Ze{l,..,/} be fixed We have with suitable polynomials
0.(t) that

KR, (0)=0D(1)+ Z P (9-0)% (1)

= o(1) z ,/2Q (1), (17)

Furthermore we have by definition of «, , ,(w) and f(x) that
: & L& y A—e 1 A8
(#1,m0(0) = =§ s (=1 mS (w). (18)

According to (17) and (18), relation (16) is shown if we prove that for each
0<i<j, 0<e< A uniformly in [f| <. /rign,

¥ S v/n)

o yyeris Sy

o(1) O.(1) (l) (1)

=o(1) Z 5 R,(1)+0,(r, )

with suitable polynomials R,(1)=R, ;. ; .(?).
We have

e =

n n_v)(z_s+i)/2=n(z—s+i)/2 (1 _v/n)(;.+i)/2 :

By Taylor expansion we furthermore have

/1 e (1)
Uy 1-x) ﬁj . O, T4 O+,
I=0

gux):= qs,l,i(x) v Wy ( x)(,{+z)/z =



284 LANDERS AND ROGGE

Hence for ve N,,neN,

[V 1 1 L gP(0) (v y\/t!
4 (74)(n—v)(’“&+")/2=n“—8+"’/2[Eo 1! (2>+0(<2) )]

Observe that ¢/”(0)=0 if £>0. Consequently (19) is shown if we prove
that

1 . ¢
pG—sr D2+ Z VlE(hvSé )=n(l—s+i)/2+1+0n(r’ B (20)

ve Ny
for 1< (A—e+1i)/2+1<j/2 and

1
PP ETET R Y VE(h|1S, 1775 =0, B) (21)

ve Ny

for (A—e+1i)/2+1>j/2. Relation (20) follows from (A) with c¢=
Y, en, VE(h,8,77). Relation (21) follows from a slight modification of (B).
Thus (P3) is shown.

Now it remains to show that (P1)—~(P3) imply the assertion, i.e., we have
to prove (7).
Since for v<n the function w— F,_ ,(/n/(n—v) t—(1//n—v) S (w))

is a version of P(S}* <t| Xy, .., X,) and since A, is o(X}, .., X,)-measurable
we obtain that

BSp <t h) =@ (| J - \/;__v 5.(0)) Pldo),

Hence

Y E(S¥<th)

=3 hv(w)D,Hw( i nl_vSv(co))P(dw)
+ 3 o) Ko ([ 1= S0 ) K 0) | Pl

+ % fhv(w) K,_, (1) P(dw).

ve N,

Thus (P1)-(P3) imply (7) and hence the assertion.

Proof of Example 2. For the case r=3 see Example 5 of [2] with
h(n)y=11if B=—2 and h(n)= (Ign)?*"2if B> —r/2.
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Therefore we assume r > 3. The concept for all three cases of this exam-
ple is the following: Let t,e R and ¢, (0, 1] be the constants of Lemma 3
and put k(n):= [co(n/lgn)]. We construct a subsequence Nc N and
disjoint sets B,eo(X, .., X,), ve N, with the following properties:

(P1) B,c{lgv2<SF</lgv}, veN

1
®2) ¥ P(Bv)=0(m (lgn)”)

vy>n

(P3) Y P(B)=o0(5,), neN

vs kln)

(P4) #D%H)VIE([S‘,[Tle)=o((5n),neN,
ifl+12<j/2,120,720,.,7eR

(F5) e 5 VEIS.I 15)=0(5,)nef,

v <€ k(n)

ifl+12>20(+1)2,120,0<t<j,,teR

1 U+ 12 R
P6) Y (ng) P(B,)~25,, neN,

v<k(n)

with suitable &> 0.

Let us first see whether (P1)~(P6) lead to an example of the desired kind.
Put B=% _ B,. Then by (P2)

velN

{
d(B,o(X,, .., X,))< ¥ P(B,)=0 (m (ig n)ﬁ>,

v>n

ie., (%) is fulfilled. By (P3) we obtain
P(S¥ <19, B)— (1) P(B)

= Y (P(S¥<ty, B,)—®(t,) P(B,))+0(5,), neN.

v < k(n)

Hence, using {P1), Lemma 3 implies that

P(S3 <10, B)— D(1,) P(B)

=fﬂt°—) 5 (zof<3>—~ al )idP+o(5,,)+5,,, (1)
=1 B y<km) A n ”—v
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where by (P6),
¢,0,<&,= 8,y <820, neN large enough, (2)

with suitable ¢,, ¢, <0.
By similar methods as in the proof of Theorem 1 (where (A) and (B)
implied (16)) we obtain from (P4), (P5) that there exist a;, .., a;€ R such

that
5 2 L () 75)
tofl—1— dP
igl i vszk(n) JABv Of n n—vy

Joa; "
= Z ;172‘-!- 0(d,), neN. : (3)
i=1

Now (1)-(3) imply that
J 7 -
P(SE <to, B)=0(to) PB)+ 3. —+s,,  nel, @)

i=1

where with suitable ¢;, ¢, <0,
€;0,<¢,<c,0, for sufficiently large ne N, (5)

By Theorem 1 we obtain

L1
P(St < 1o, B)=®(10) P(B) + ¢(t0) ), —5 Qislt) + 03,). ()

Now (4)—(6) yield a,=¢(ty) O, 5(t0), i=1, .../, and hence (4), (5) imply
the assertion.

Thus it remains to construct N < N and B, e 6(X;, ..., X,), ve N, disjoint,
fulfilling (P1)-(P6). We distinguish the cases re N and r¢ N.

CasereN. Here j=j(r)=r—3 and = —r/2. Since

P{/igv2< Sy < /lgv} = o(/igv) ~ o(/lgv2) > .vi/_

for all sufficiently large v, there exist voe N and disjoint B, e o(X4, ..., X,),
V24, such that

B, {/Igv2< Sy </lgv},  v=v,, (7

1
P(Bv)=;r/—2(1g v)ﬁs V}VO. (8)
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Put B,= ¥ for v<v, and take N =N. Then obviously (P1), (P2) are
fulfilled.

Ad (P3). For sufficiently large n we have by (P2) that

Y P(B)\c

v>k(n)

W (Ig k(n))?

1
Se o (lgn) " P =0(3,)

Ad (P4). Let I+1/2<j/2=(r—3)/2. Then we obtain

1
Hn)i=~p 2 VE(S."15)

v > k(n)
1
< =5 vi(vlig v)”* P(B,
) nl+t/2v>§(n) ( g ) ( }
1

{+1/2—1r/2 B+1/2
PR DI (Igv)"re
(8) v> k()

and [+1/2—r/2< — 2 implies

1
H(n)sc 7 (k(n))l+r/2—r/2+1 (lg k(n))ﬁ+r/2
n

1
<c—y e n)P =22 1=6(5,).
Ad(PS). LetI+12=(+1)2=(r—2)/2, 0<1<]. Then

1
Ly = 5 T VE(SIT L)

v < k(n)

1

14+ t/2—r/2 B+1/2.
7<s R X (Igv)
) (8) 2<v<kin)

First let /4 1/2 = (r—2)/2. Since 1 <j=r— 3 this implies /> 3 and hence
by a simple calculation

1 1
Lin)<e———5 PR3 Z = (lg v)~1RHAH -2
2L v £ k(n)
Igign
0<n(’ 2)/2) B=—r/2

= 1 B+r2 =0(5,).
0 <( i:z_“z)/z ) (B> —r2
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It remains to consider the case /4 t/2> (r —2)/2. Then I+ 1t/2—r/2> —
and we have

L(n) <c n_l—i—r/i ((k(n))l+r/2—r/2+ 1 (1g k(n))lg+r/2)
1
Lc—— B+(r—2)2 _
¢ o (gn) 0(8,).

Ad (P6). We have by (8)
ylg y\U+ 12
Y () ps)

v<k(n)

1
(;_) =272 Z

vosvskin)

Iglgn
n(r—2)/2’

1 (lgn)ﬁ+r/2
B2 nt IR

Caser¢éN. Here j=j(r)=[r]—2 and = — (r—2)/2. Put

1(1g y)B+ =202

if p=—rf2

=25,.

if B> —r2

N:={2?:ieN} and N:= {neN:k(n)—;':col—gn—]eN}.
n

Then there exist voe N and disjoint B,eo(X,, .., X,), veN, v=v,, suct

that
B, {/lgv2<S¥</lgv} 9

1 o
P(Bv)=m(lg v)~, veN, vy, (10

Put B,= & if v<v, or v¢ N. Then obviously (P1), (P2) are fulfilled.

Ad (P3). Let neN. Then k(n)eN and therefore B, = if k(n)<v<
k*(n). Hence we obtain for sufficiently large ne N

Y, P(B,)=)Y P(B)=o0(5,), neN.

v>k(n) v>n

Ad (P4). Let I4+1/2<j/2=([r]—2)/2. We have by (9), (10) that

1
H(n) = v Y VE(S,[" 1)

v>k(n)
1
< 5 2, v'P7(lgv)”? P(B,)
©®n v>k(n)

1
[+1/2— (r—~2)/2 2
S —73 Z yITER S22 (g )R,

aon v>k(n),veN



ASYMPTOTIC EXPANSIONS 289

Let neN. Then v>k(n), veN, implies v=k*n)=k(n)lgk(n). As
I+1/2—(r—2)/2 <0 we consequently obtain for sufficiently large ne N

1
H(n)< ¢ (k(n) g k(n))! + 2= =22 (g )P + 72
1 B+1/2
N (lgn)” ™=

1 «
=o<;(7ﬁ—2)/—2 (g n)“"‘zw):o(é,,), neN.

/

Ad (P5). Let I+1/2>(j+1)2=([r]—1)/2 and 0<1 </ We have

1
Ln) = —5 2 VE(S,|"15)
n v k(n)
1
< I+ 1/2—(r—2)/2 1 B+T/2‘
o 10y 12 % v (Igv)

wEvskn),veN

AsI+1/2>([r]1—1)/2>(r—2)/2 and as k(n)eN for all ne N, we obtain
for all sufficiently large ne N

1
L(n) < ¢ =g (k(m)' 20272 (Ig k()P 7
< —1_(1 )ﬂ+(r72)/2‘1
\cn(r~2)/2 gn .
As [+ 1/2>j/2 and ©<, we have /> 0. Therefore
1 “
L(n)=o (Fz—yz‘ (g ”)“"‘2’/2) =0(3,), neN.

Ad (P6). Since j+ 1 >r—2, we obtain by (10) for all ne N

ylg v\ U+
> (2B psy

v < k(n)

1
(;)n(j+1)/2 Z

vosvsk(n),veN

pli+ 12— (r~2)/2(1g v)*“ (J+1)2

~ nTil*)/z (k(n))V+HD2=U-D2 (19 k(nyyf +u+1/2

1 N
~ +r—2)2 __
ol 05(7?2—)/_2 (lg n)ﬁ r=2y =0, neN

with & ;= C(()J'+1)/2—(r—2)/2.
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LemMa 3. Let X, neN, be i.id N(0, 1)-distributed. Let je N and put

fx)=(1-x)""-1.
Then there exist toe R, ¢y € (0, 1] such that for all sufficiently large ne N,

all v<confign, and all B,e o(Xy, .., X,) with B, < {\/1gv/2< S} < /lgv},
P(S;k <t0’ B )~'¢(t0) P(Bv)

_111¢(1)(t)f< () \/%)idP-FEn,v

holds, where for suitable c,, c, <0,
1 (Jj+1)2 1 (j+1)2
cl (v 5") P(Bv)ggn,v<c2 <v 5") P(Bv)

Proof. It is easy to see that there exists ¢, > 1 with
(=1 U+ D(1) <O, (1
Since & — ®(1g/n/(n—v)—S,(w)/\/n—v) is a version of P(S*<
to| Xy, ., X,), v<n, and since B,eo(X, .., X,) we obtain
P(S} <10, B,) — (1) P(B,)

Lol ) e @

By the Taylor expansion we have

®(u) — B(1o)

d 0 i 1 1 1
=X ) g )T )

with e [y, 10]. Put u=u, (o) =to/n/(n—v)— (1//n—v) S,(w); then
S
u‘¢0=tof<£)‘“vﬂﬁi;- 4)

Hence (2)-(4) imply the assertion if we prove that the stated inequality for
&, is fulfilled with

= ], TP @V € P

=(,-j 1)'i <JT 1) fsv(%f (?v%))l

x(—l)fJ“‘—’(%

j+1—1
) @U*1(E) P,
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where &=¢, ()€ [u, (), t,]. As S (w)<./vigv for each we B, we
obtain for all 1 <I<j+1,v<n/lgn

LG (=) o]

< Y_ l__,..l____. IS !j+i‘ldp
SE\L) norTR ], 1

1

(vigv)V*1"92P(B,)

14
SCoGeE iR

1 (F+1y2 2
n n

1 (+1)2 2
n ign

Hence the stated inequality for e,, holds, if there exist 0<¢cy<1 and
5, ¢4 <0 such that for all sufficiently large » and all v < cy(n/lg n),

yigy U+1)/2
C3 <-—;§_) P(Bv)

<J< S, >’+1(_1)j+1¢(f+1)(§)dP<c4<
B,

N/ "
To prove (5) choose d,>0 and ¢s, ¢c <0 such that

es< (= 1Y @UI(E) Ko, forall e [ty— 8o, to+0,).  (6)

This is possible according to (1). As B, < {\/lgv/2<S¥ < /lgv} it is easy
to see that there exist ¢, € (0, 1], noe N such that

vigy

(J+1)/2
) PBB).  (5)

no S(o)
*Nn—v Jn—v

év,n(a)) € [tO - 509 ZO + 50]

u, (w)=1 €[to— 3, to+ g1

and hence
75

P

for all we B,, n=ng, and v< cp(n/lgn). Now (6) and (7) imply (5). This
finishes the proof of the assertion.

LEMMA 4. Let X,€ ., neN, be iid. with E(X,)=0 and E(X?)=1. Let
r>3; then we have for all y= 1 and O<t<r

ELISul™ Lisgys 7T agmyy 1 < em™ 07202 (Ig my =0

with a suitable constant ¢ > Q.
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Proof. We have
E[l Sm |T 1{|S;12./r—1 (lgm)V}]

[(m(r—1))" (Igm)"T*
E S [
\/m (lgm)y {1Sm/~/m{r—1) (g m)'|*> 1}

. S !
/2 l yT P{\ i >k}
o lem” L P e Dy
cm’/z(lg m)yr Z P{IS;kn! Zkl/r \/;?—_I (lg m)v}

keN

1 1
/2 1 1%3
cm ( g m) ng mr=22 kr/r(lg m)yr

< cmr/2~ (r—2)/2(1g m)y(r—r)’

I

VAN

A

A

where (*) follows from Theorem 2 of [5] or from Corollary 17.12 of [1].
LEMMA 5. Let N, ={2":veN} and N,={veN, :v<nflgn}. Then

O(n®(lg n)’—*%), e>0, yeR
0((1gn)y+l), 8207 '})>“‘1

51 7=
v;\]ﬂv(g") O(lglgn), e=0, y=-—1
0(1)3 8:0, < —1.
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