Asymptotic Expansions in the Conditional Central Limit Theorem

DIETER LANDERS

Institute of Mathematics, University of Köln, D-5000 Köln 41, West Germany

AND

LOTHAR ROGGE

Fachbereich 11-Mathematik, University of Duisburg, D-4100 Duisburg 1, West Germany Communicated by P. L. Butzer

Received February 10, 1989

Let $X_n, n \in \mathbb{N}$, be i.i.d. with mean 0, variance 1, and $E(|X_n|^r) < \infty$ for some $r \ge 3$. Assume that Cramér's condition is fulfilled. We prove that the conditional probabilities $P(1/\sqrt{n}\sum_{i=1}^n X_i \le t \mid B)$ can be approximated by a modified Edgeworth expansion up to order $o(1/n^{(r-2)/2})$, if the distances of the set B from the σ -fields $\sigma(X_1,...,X_n)$ are of order $O(1/n^{(r-2)/2})(\lg n)^\beta)$, where $\beta < -(r-2)/2$ for $r \notin \mathbb{N}$ and $\beta < -r/2$ for $r \in \mathbb{N}$. An example shows that if we replace $\beta < -(r-2)/2$ by $\beta = -(r-2)/2$ for $r \notin \mathbb{N}$ ($\beta < -r/2$ by $\beta = -r/2$ for $r \in \mathbb{N}$) we can only obtain the approximation order $O(1/n^{(r-2)/2})$ for $r \notin \mathbb{N}$ ($O(\lg \lg n/n^{(r-2)/2})$) for $r \in \mathbb{N}$). © 1990 Academic Press, Inc.

1. Introduction and Notations

Let X_n , $n \in \mathbb{N}$, be a sequence of i.i.d. real valued random variables with mean 0 and variance 1. Put $S_n = \sum_{i=1}^n X_i$ and $S_n^* = 1/\sqrt{n} \sum_{i=1}^n X_i$. Denote by $d(B, \sigma(X_1, ..., X_n)) := \inf\{P(B \triangle B_n) : B_n \in \sigma(X_1, ..., X_n)\}$ the distance of the set B from the σ -field $\sigma(X_1, ..., X_n)$. In this paper we look for Edgeworth expansions of the conditional probabilities $P(S_n^* \le t \mid B)$. If $E(\mid X_1 \mid^r) < \infty$ for some $r \ge 3$ and if Cramér's condition is fulfilled, i.e., $\overline{\lim}_{|I| \to \infty} |E(e^{itX_1})| < 1$, then we have (for $B = \Omega$) the well-known expansion

$$\sup_{t \in \mathbb{R}} \left| P(S_n^* \le t) - \Phi(t) - \varphi(t) \sum_{i=1}^{[r]-2} \frac{1}{n^{i/2}} Q_i(t) \right| = o\left(\frac{1}{n^{(r-2)/2}}\right)$$

0021-9045/90 \$3.00

(see, e.g., Theorem 2, p. 168 of Petrov [6]). Here Φ denotes the standard normal distribution function and φ its density.

 $Q_i(t)$ are the classical polynomials and $[x] = \max\{n \in \mathbb{N} : n \le x\}$. For more general sets B there exists only one expansion result (see [4]). This result deals with the case r = 4 and uses one correcting term. It was shown in [4] that $d(B, \sigma(X_1, ..., X_n)) = O(1/n(\lg n)^{\beta})$ for some $\beta < -2$ implies that

$$\sup_{t \in \mathbb{R}} \left| P(S_n^* \leqslant t \mid B) - \Phi(t) - \varphi(t) \frac{\hat{Q}_{1,B}(t)}{n^{1/2}} \right| = O\left(\frac{1}{n}\right)$$

with $\hat{Q}_{1,B}(t) = Q_1(t) - a$, where a is a constant depending on B and the distribution of X_1 .

In this paper we give higher order asymptotic expansions for $P(S_n^* \le t | B)$. We prove that

$$d(B, \sigma(X_1, ..., X_n)) = O\left(\frac{1}{n^{(r-2)/2}} (\lg n)^{\beta}\right)$$

implies that there exist polynomials $\hat{Q}_{i,B}(t)$ such that uniformly in $t \in \mathbb{R}$,

$$\begin{split} \left| P(S_n^* \leqslant t \mid B) - \varPhi(t) - \varphi(t) \sum_{i=1}^{\lceil r \rceil - 2} \frac{\hat{\mathcal{Q}}_{i,B}(t)}{n^{i/2}} \right| \\ & = \begin{cases} o\left(\frac{1}{n^{(r-2)/2}}\right), & r \notin \mathbb{N}, \quad \beta < -\frac{r-2}{2} \\ O\left(\frac{(\lg n)^{\beta + (r-2)/2}}{n^{(r-2)/2}}\right), & r \notin \mathbb{N}, \quad \beta \geqslant -\frac{r-2}{2} \end{cases} \\ & = \begin{cases} o\left(\frac{1}{n^{(r-2)/2}}\right), & r \in \mathbb{N}, \quad \beta < -r/2 \\ O\left(\frac{\lg \lg n}{n^{(r-2)/2}}\right), & r \in \mathbb{N}, \quad \beta = -r/2 \\ O\left(\frac{(\lg n)^{\beta + r/2}}{n^{(r-2)/2}}\right), & r \in \mathbb{N}, \quad \beta > -r/2 \end{cases} \end{split}$$

(see Theorem 1 with $g = 1_B$).

This result shows a surprising difference between the cases $r \in \mathbb{N}$ and $r \notin \mathbb{N}$. Nevertheless all approximation orders are optimal (see Example 2).

2. The Results

In this section we present our results, postponing the proofs until Section 3.

If g is a measurable function we denote by

$$d_1(g, \sigma(X_1, ..., X_n)) := \inf\{E(|g-h|): h \text{ is } \sigma(X_1, ..., X_n) \text{ measurable}\}$$

the $\|\cdot\|_1$ -distance of g from the subspace of all integrable $\sigma(X_1, ..., X_n)$ measurable functions. We write $E(S_n^* \leq t, g)$ instead of $E(g \cdot 1_{\{S_n^* \leq t\}})$.

The following theorem is the main result of this paper.

Since $\varphi(t)(1/n^{([r]-2)/2})$ $Q_{[r]-2,g}(t) = O_n(r,\beta)$ for the last two cases of this theorem (i.e., for $r \in \mathbb{N}$, $\beta \ge -r/2$) we omit in these cases the last term of the expansion. Hence we consider in these cases the expansion up to the (r-3) th term only. Observe that all convergence orders $O_n(r,\beta)$ are optimal (see Example 2).

THEOREM 1. Let $r \geqslant 3$ and let $X_n, n \in \mathbb{N}$, be i.i.d. with $E(X_1) = 0$, $E(X_1^2) = 1$, and $E(|X_1|^r) < \infty$. Assume that Cramér's condition is fulfilled. Let g be a bounded measurable function, let $\beta \in \mathbb{R}$, and assume that

$$d_1(g, \sigma(X_1, ..., X_n)) = O\left(\frac{1}{n^{(r-2)/2}} (\lg n)^{\beta}\right). \tag{*}$$

Then there exist polynomials $Q_{i,g}(t)$ (the coefficients depend on g and on the distribution of X_1) such that

$$\sup_{t \in \mathbb{R}} \left| E(S_n^* \leq t, g) - \Phi(t) E(g) - \varphi(t) \sum_{i=1}^{j(r,\beta)} \frac{1}{n^{i/2}} Q_{i,g}(t) \right| = O_n(r,\beta),$$

where

$$j(r,\beta) = \begin{cases} [r] - 2, & \text{if } r \notin \mathbb{N} \text{ or } r \in \mathbb{N}, & \beta < -r/2 \\ r - 3, & \text{if } r \in \mathbb{N}, & \beta \geqslant -r/2 \end{cases}$$

and

$$O_n(r,\beta) = \begin{cases} o\left(\frac{1}{n^{(r-2)/2}}\right), & \text{if } r \notin \mathbb{N}, \quad \beta < -\frac{r-2}{2} & \text{(i)} \\ O\left(\frac{(\lg n)^{\beta + (r-2)/2}}{n^{(r-2)/2}}\right), & \text{if } r \notin \mathbb{N}, \quad \beta \ge -\frac{r-2}{2} & \text{(ii)} \\ o\left(\frac{1}{n^{(r-2)/2}}\right), & \text{if } r \in \mathbb{N}, \quad \beta < -r/2 & \text{(iii)} \\ O\left(\frac{\lg \lg n}{n^{(r-2)/2}}\right), & \text{if } r \in \mathbb{N}, \quad \beta = -r/2 & \text{(iv)} \\ O\left(\frac{(\lg n)^{\beta + r/2}}{n^{(r-2)/2}}\right), & \text{if } r \in \mathbb{N}, \quad \beta > -r/2. & \text{(v)} \end{cases}$$

Remark. The polynomials $Q_{i,g}(t)$ of Theorem 1 can be computed alon the lines of the proof of Theorem 1. We have, e.g.,

$$Q_{1,g}(t) = Q_1(t) E(g) - a_1$$

$$Q_{2,g}(t) = Q_2(t) E(g) + (\frac{1}{2}E(X_1^3) a_1 - \frac{1}{2}a_2) t - \frac{1}{6}a_1 E(X_1^3) t^3,$$

where a_1 , a_2 are constants depending on g and on the distribution of X For $Q_{1,g}(t)$ see also Theorem 1 of [4].

The following example shows that the approximation orders give in Theorem 1 are optimal. It is well known that even if $g = 1_{\Omega}$ —whence $d_1(g, \sigma(X_1, ..., X_n)) \equiv 0$ —the approximation orders $o(1/n^{(r-2)/2})$ of Theorem 1 (i.e., case (i) and case (iii)) cannot be improved. Therefore Example 2 deals with the remaining three cases. Always we choose $g = 1_B$ with a suitable set B. Observe that $d_1(1_B, \sigma(X_1, ..., X_n)) \leq d(B, \sigma(X_1, ..., X_n))$ (this can be shown, e.g., by using the Fubini Theorem

EXAMPLE 2. Let X_n , $n \in \mathbb{N}$, be i.i.d. N(0, 1)-distributed. Let $r \ge 3$, $\beta \in \mathbb{F}$ Then there exist $B \in \sigma(X_n : n \in \mathbb{N})$ and $t_0 \in \mathbb{R}$, c > 0, such that

$$d(B, \sigma(X_1, ..., X_n)) = O\left(\frac{1}{n^{(r-2)/2}} (\lg n)^{\beta}\right)$$
 (*

and

$$\left| E(S_n^* \leq t_0, B) - \Phi(t_0) P(B) - \varphi(t_0) \sum_{i=1}^{j} \frac{1}{n^{i/2}} Q_{i,B}(t_0) \right| \geqslant c\delta_n$$

for infinitely many $n \in \mathbb{N}$, where

$$j = j(r) = \begin{cases} [r] - 2, & r \notin \mathbb{N} \\ r - 3, & r \in \mathbb{N} \end{cases}$$

and

$$\delta_{n} = \delta_{n}(r, \beta) = \begin{cases} \frac{(\lg n)^{\beta + (r-2)/2}}{n^{(r-2)/2}}, & \text{if } r \notin \mathbb{N}, \quad \beta \ge -\frac{r-2}{2} \\ \frac{\lg \lg n}{n^{(r-2)/2}}, & \text{if } r \in \mathbb{N}, \quad \beta = -r/2 \\ \frac{(\lg n)^{\beta + r/2}}{n^{(r-2)/2}}, & \text{if } r \in \mathbb{N}, \quad \beta > -r/2. \end{cases}$$

Here $Q_{i,B}(t) = Q_{i,1B}(t)$ are the polynomials of Theorem 1.

3. Proof of the Results

To prevent the proof of Theorem 1 from becoming too lengthy we try to unify the proof as far as possible for the rather different types of approximation orders $O_n(r, \beta)$. Some lemmas which are needed for the proofs of Theorem 1 and Example 2 are given at the end of this section.

Proof of Theorem 1. Let $j \in \mathbb{N} \cup \{0\}$ be fixed. We prove the result for pairs (r, β) with $j(r, \beta) = j$. For j = 0, we have r = 3, $\beta \ge -\frac{3}{2}$ and the result is part of Theorem 4 of [3]. We assume therefore that $j \ge 1$. We need some conventions and notations. Throughout the proof we use the symbol c to denote a general constant which may depend on r, β , and the distribution of X_1 . Put $\mathbb{N}_1 = \{2^i : i \in \mathbb{N}\}$, $N_n = \{v \in \mathbb{N}_1 : v \le n/\lg n\}$, and define $k(n) = \max N_n$, $n \ge 2$. Let g be a bounded and measurable function, fulfilling condition (*) of Theorem 1. Choose $\sigma(X_1, ..., X_n)$ measurable functions g_n with $E(|g-g_n|) = d_1(g, \sigma(X_1, ..., X_n))$. Put $h_2 = g_2$ and $h_v = g_v - g_{v/2}$ for each $v \in \mathbb{N}_1$, $v \ge 4$. Then we obtain by assumption (*)

$$E(|h_{\nu}|) \leqslant c \frac{(\lg \nu)^{\beta}}{\nu^{(r-2)/2}}, \qquad \nu \in \mathbb{N}_{1}.$$
(1)

We show first two relations which are essential tools for the proof:

(A)
$$\frac{1}{n^{l+\tau/2}} \sum_{k(n) \leq \nu \in \mathbb{N}_1} \nu^l E(|h_{\nu}| |S_{\nu}|^{\tau}) = O_n(r, \beta)$$
$$if \ l + \tau/2 \leq j/2, \ l \geq 0, \ \tau \geq 0, \ and \ l, \ \tau \in \mathbb{R}.$$

(B)
$$\frac{1}{n^{l+\tau/2}} \sum_{v \in N_n} v^l E(|h_v| |S_v|^{\tau}) = O_n(r, \beta)$$
$$if \ l + \tau/2 \ge (j+1)/2, \ l \ge 0, \ 0 \le \tau < r, \ and \ l, \ \tau \in \mathbb{R}.$$

Ad (A). If $v \ge 2$, $0 < \tau < r$, we have by Lemma 4 and (1) for each $\gamma \ge \frac{1}{2}$

$$E(|h_{\nu}||S_{\nu}|^{\tau}) \leq cE(|S_{\nu}|^{\tau} 1_{\{|S_{\nu}^{*}| \geq \sqrt{r-1} (\lg \nu)^{\gamma}\}}) + cv^{\tau/2} (\lg \nu)^{\gamma \tau} E(|h_{\nu}|)$$

$$\leq cv^{\tau/2 - (r-2)/2} ((\lg \nu)^{\gamma(\tau-r)} + (\lg \nu)^{\gamma\tau+\beta}). \tag{2}$$

For $\tau = 0$, (2) follows from (1). Relation (2) implies

$$H(n) := \frac{1}{n^{l+\tau/2}} \sum_{k(n) \leq v \in \mathbb{N}_1} v^l E(|h_v| |S_v|^{\tau})$$

$$\leq c \frac{1}{n^{l+\tau/2}} \sum_{k(n) \leq v \in \mathbb{N}_1} v^{l+\tau/2-(r-2)/2} \left((\lg v)^{\gamma(\tau-r)} + (\lg v)^{\gamma\tau+\beta} \right). \tag{3}$$

We consider at first the case $l + \tau/2 < (r-2)/2$. As

$$\sum_{k(n) \leq v \in \mathbb{N}_1} \frac{1}{v^{\varepsilon}} (\lg v)^{\delta} \leq \frac{c}{n^{\varepsilon}} (\lg n)^{\varepsilon + \delta} \quad \text{if} \quad \varepsilon > 0$$

we obtain from (3) with $\gamma = \frac{1}{2}$

$$H(n) \leq c \frac{1}{n^{(r-2)/2}} (\lg n)^{(r-2)/2 - (l+\tau/2)} \left[(\lg n)^{(\tau-r)/2} + (\lg n)^{\tau/2 + \beta} \right]$$

$$= c \frac{1}{n^{(r-2)/2}} \left[\frac{1}{(\lg n)^{1+l}} + (\lg n)^{\beta + (r-2)/2 - l} \right] = O_n(r, \beta).$$

As $l+\tau/2 \le j/2 \le (\lfloor r \rfloor -2)/2 \le (r-2)/2$ it remains to consider the case $l+\tau/2 = (r-2)/2$. Hence $j=j(r,\beta)=r-2$, whence $r \in \mathbb{N}$, $\beta < -r/2$. Consequently there exists γ with $\frac{1}{2} < \gamma < -(\beta+1)/j = -(\beta+1)/(r-2)$. Then $\gamma(\tau-r) < -1$ and $\gamma\tau + \beta < -1$, and (3) implies

$$H(n) = o\left(\frac{1}{n^{(r-2)/2}}\right) = O_n(r, \beta).$$

Ad (B). We obtain from (2) for each $\gamma \ge \frac{1}{2}$,

$$L(n) = \frac{1}{n^{l+\tau/2}} \sum_{v \in N_n} v^l E(|h_v| |S_v|^{\tau})$$

$$\leq c \frac{1}{n^{l+\tau/2}} \sum_{v \in N_n} v^{l+\tau/2 - (r-2)/2} ((\lg v)^{\gamma(\tau-r)} + (\lg v)^{\gamma\tau+\beta}). \tag{4}$$

We consider the three cases $l + \tau/2 \leq (r-2)/2$:

- (i) As $l + \tau/2 \ge (j+1)/2 \ge (r-2)/2$, $l + \tau/2 < (r-2)/2$ is impossible.
- (ii) If $l + \tau/2 > (r-2)/2$, apply (4) with $\gamma = \frac{1}{2}$. Then we obtain using Lemma 5

$$L(n) \leq c \frac{1}{n^{l+\tau/2}} n^{l+\tau/2 - (r-2)/2} \left(\frac{1}{(\lg n)^{1+l}} + (\lg n)^{\beta + (r-2)/2 - l} \right)$$

$$\leq c \frac{1}{n^{(r-2)/2}} \left(\frac{1}{\lg n} + (\lg n)^{\beta + (r-2)/2} \right) = O_n(r, \beta).$$

(iii) Finally let $l + \tau/2 = (r - 2)/2$.

Hence $(r-2)/2 = l + \tau/2 \ge (j+1)/2$, i.e., $j \le r-3$, whence $r \in \mathbb{N}$ and $\beta \ge -r/2$.

Applying (4) with $\gamma = \frac{1}{2}$ we obtain

$$L(n) \le c \frac{1}{n^{(r-2)/2}} \sum_{v \in N_n} \left(\frac{1}{\lg v} + (\lg v)^{\beta + (r-2)/2} \right).$$
 (5)

By Lemma 5 we have $\sum_{v \in N_n} 1/\lg v = O(\lg \lg n)$ and

$$\sum_{v \in N_n} (\lg v)^{\beta + (r-2)/2} = \begin{cases} O(\lg \lg n), & \text{if } \beta = -r/2 \\ O((\lg n)^{\beta + r/2}), & \text{if } \beta > -r/2. \end{cases}$$

Hence (5) implies $L_n = O_n(r, \beta)$. Thus (A) and (B) are proven.

Using $1 - \Phi(\sqrt{r \lg n}) = o(1/n^{(r-2)/2})$ and similar methods as in the proof of Theorem 1 of [4], it suffices to construct polynomials $Q_{i,g}(t)$, i = 1, ..., j, such that

$$\sup_{|t| \le \sqrt{r \lg n}} \left| E(S_n^* \le t, g) - \Phi(t) E(g) - \varphi(t) \sum_{i=1}^j \frac{1}{n^{i/2}} Q_{i,g}(t) \right| = O_n(r, \beta).$$
 (6)

Since $g = g - g_{k(n)} + \sum_{v \in N_n} h_v$, we obtain by assumption (*)

$$\sup_{t \in \mathbb{R}} \left| E(S_n^* \leq t, g) - \sum_{v \in N_n} E(S_n^* \leq t, h_v) \right|$$

$$\leq E(|g - g_{k(n)}|) = O\left(\frac{1}{(k(n))^{(r-2)/2}} (\lg k(n))^{\beta}\right)$$

$$= O\left(\frac{1}{n^{(r-2)/2}} (\lg n)^{\beta + (r-2)/2}\right) = O_n(r, \beta).$$

Hence it suffices to prove that

$$\sup_{|t| \leq \sqrt{r \lg n}} \left| \sum_{v \in N_n} E(S_n^* \leq t, h_v) - \Phi(t) E(g) - \varphi(t) \sum_{i=1}^j \frac{1}{n^{i/2}} Q_{i,g}(t) \right|$$

$$= O_n(r, \beta). \tag{7}$$

Let F_n be the distribution function of S_n^* and let

$$K_{n,j}(t) = \Phi(t) + \varphi(t) \sum_{i=1}^{j} \frac{1}{n^{i/2}} Q_i(t)$$

be the classical asymptotic expansions. Put $D_{n,j} = F_n - K_{n,j}$.

We prove three properties which imply our assertion as we see later:

(P1)
$$\sup_{t \in \mathbb{R}} \left| \sum_{v \in N_n} \int h_v(\omega) D_{n-v,j} \left(\sqrt{\frac{n}{n-v}} t - \frac{1}{\sqrt{n-v}} S_v(\omega) \right) P(d\omega) \right|$$
$$= O_n(r, \beta)$$

(P2)
$$\sup_{t \in \mathbb{R}} \left| \sum_{v \in N_n} \int h_v(\omega) K_{n-v,j}(t) P(d\omega) - \Phi(t) E(g) - \varphi(t) \sum_{i=1}^{j} \frac{1}{n^{i/2}} Q_{i,g}^{(1)}(t) \right| = O_n(r,\beta)$$
(P3)
$$\sup_{|t| \le \sqrt{r \lg n}} \left| \sum_{v \in N_n} \int h_v(\omega) \left[K_{n-v,j} \left(\sqrt{\frac{n}{n-v}} t - \frac{1}{\sqrt{n-v}} S_v(\omega) \right) - K_{n-v,j}(t) \right] P(d\omega) - \varphi(t) \sum_{i=1}^{j} \frac{1}{n^{i/2}} Q_{i,g}^{(2)}(t) \right| = O_n(r,\beta)$$

with suitable polynomials $Q_{i,g}^{(1)}(t)$, $Q_{i,g}^{(2)}(t)$.

Ad (P1). Since Cramér's condition is fulfilled, we have by the classical asymptotic expansion (see [6, Theorem 2, p. 168]) that

$$\sup_{y \in \mathbb{R}} |D_{n-\nu,j}(y)| \le \begin{cases} c \frac{\varepsilon_{n-\nu}}{(n-\nu)^{(r-2)/2}}, & \text{if } j = [r] - 2\\ c \frac{1}{(n-\nu)^{(r-2)/2}}, & \text{if } j = r - 3, \end{cases}$$
 (8)

where $\varepsilon_m \to_{m \in \mathbb{N}} 0$. Since $n - v \ge n/2$ for all $v \in N_n$ (if $\lg n \ge 2$), (8) implies

$$\sup_{v \in N_n, y \in \mathbb{R}} |D_{n-v,j}(y)| = O_n(r, \beta). \tag{9}$$

Let A_n be the expression occurring in (P1). Then (9) and (1) imply

$$A_n \leq \sum_{v \in N_n} E(|h_v|) O_n(r, \beta) = O_n(r, \beta).$$

Ad (P2). By definition of $K_{n-\nu,j}$, we have

$$\sum_{v \in N_n} \int h_v(\omega) K_{n-v,j}(t) P(d\omega)$$

$$= \Phi(t) E(g_{k(n)}) + \varphi(t) \sum_{v \in N_n} \left(E(h_v) \sum_{i=1}^j \frac{1}{(n-v)^{i/2}} Q_i(t) \right). \tag{10}$$

For $v \in N_n$, $n \in \mathbb{N}$, and $i \le j$, we have

$$\frac{1}{(n-v)^{i/2}} = \frac{1}{n^{i/2}} \left(\sum_{l=0}^{j} {\binom{-i/2}{l}} \left(-\frac{v}{n} \right)^{l} + O\left(\left(\frac{v}{n} \right)^{j+1} \right) \right),$$
where $O\left(\frac{v}{n} \right) \leqslant c \frac{v}{n}$.

Hence (10) implies

$$\begin{split} \sum_{v \in N_n} K_{n-v,j}(t) & E(h_v) \\ &= \varPhi(t) E(g_{k(n)}) \\ &+ \varphi(t) \sum_{i=1}^{j} \sum_{l=0}^{j} \binom{-i/2}{l} \frac{1}{n^{i/2+l}} \sum_{v \in N_n} (-v)^l E(h_v) Q_i(t) \\ &+ \varphi(t) \sum_{i=1}^{j} \frac{1}{n^{i/2}} \sum_{v \in N_n} O\left(\left(\frac{v}{n}\right)^{j+1}\right) E(h_v) Q_i(t). \end{split}$$

As $E(g_{k(n)}) = E(g) + O_n(r, \beta)$, (P2) is shown if we prove that for $1 \le i \le j$, $0 \le l \le j$,

$$\frac{1}{n^{i/2+l}} \sum_{v \in N_n} (-v)^l E(h_v) = \frac{c}{n^{i/2+l}} + O_n(r, \beta)$$
for $i/2 + l \le j/2$ (11)
$$\frac{1}{n^{i/2+l}} \sum_{v \in N_n} v^l E(|h_v|) = O_n(r, \beta)$$
for $i/2 + l > i/2$. (12)

Ad (11). As $i/2 + l \le j/2$ and $i \ge 1$, we have l < j/2. Hence (1) applied to $\tau = 0$ yields that $\sum_{\nu \in \mathbb{N}_1} \nu^l E(|h_{\nu}|) < \infty$. Put $c = \sum_{\nu \in \mathbb{N}_1} (-\nu)^l E(h_{\nu})$. Then (A) applied to $\tau = 0$ yields

$$\begin{split} \left| \frac{1}{n^{i/2+l}} \left(\sum_{v \in N_n} (-v)^l E(h_v) - c \right) \right| &\leq \frac{1}{n^{i/2+l}} \sum_{k(n) \leq v \in \mathbb{N}_1} v^l E(|h_v|) \\ &\leq \frac{1}{n^l} \sum_{k(n) \leq v \in \mathbb{N}_1} v^l E(|h_v|) = O_n(r, \beta). \end{split}$$

Ad (12). (B) applied to $\tau = 0$ and i/2 + l instead of l yields

$$\frac{1}{n^{i/2+l}} \sum_{v \in N_n} v^l E(|h_v|) \leq \frac{1}{n^{i/2+l}} \sum_{v \in N_n} v^{i/2+l} E(|h_v|) = O_n(r, \beta).$$

Ad (P3). Let $u := u_{t,n,\nu}(\omega) = \sqrt{n/(n-\nu)} t - (1/\sqrt{n-\nu}) S_{\nu}(\omega) = t(f(\nu/n)+1) - (1/\sqrt{n-\nu}) S_{\nu}(\omega)$, where $f(x) = (1-x)^{-1/2} - 1 = \sum_{p=1}^{\infty} {\binom{-1/2}{p}} (-x)^p \le cx$ for $0 \le x \le \frac{1}{2}$.

Hence we have for $v \in N_n$, $n \in \mathbb{N}$,

$$|u_{t,n,\nu}(\omega)-t| \leq c \left(|t|\frac{\nu}{n}+\frac{1}{\sqrt{n}}|S_{\nu}(\omega)|\right),$$

whence

$$|u_{t,n,\nu}(\omega) - t|^{j+1} \le c \left(|t|^{j+1} \left(\frac{\nu}{n} \right)^{j+1} + \frac{1}{n^{(j+1)/2}} |S_{\nu}(\omega)|^{j+1} \right). \tag{13}$$

By the Taylor expansion we have

$$K_{n-\nu,j}(u) - K_{n-\nu,j}(t) = \sum_{\lambda=1}^{j} \frac{1}{\lambda!} K_{n-\nu,j}^{(\lambda)}(t) (u-t)^{\lambda} + \frac{1}{(j+1)!} K_{n-\nu,j}^{(j+1)}(\xi) (u-t)^{j+1}$$
(14)

with $\xi = \xi_{t,n,\nu}(\omega) \in [u_{t,n,\nu}(\omega), t].$

According to (14), property (P3) is shown if we prove that

$$B_{n} := \sup_{|t| \leq \sqrt{r \lg n}} \left| \sum_{v \in N_{n}} \int h_{v}(\omega) (u_{t,n,v}(\omega) - t)^{j+1} \right|$$

$$\times K_{n-v,j}^{(j+1)}(\xi_{t,n,v}(\omega)) P(d\omega)$$

$$= O_{n}(r,\beta)$$

$$(15)$$

and that for each $\lambda = 1, ..., j$ there holds uniformly in $|t| \le \sqrt{r \lg n}$

$$\sum_{\nu \in N_n} K_{n-\nu,j}^{(\lambda)}(t) \int (u_{t,n,\nu}(\omega) - t)^{\lambda} h_{\nu}(\omega) P(d\omega)$$

$$= \varphi(t) \sum_{p=1}^{j} \frac{1}{n^{p/2}} Q_{p,g,\lambda}(t) + O_n(r,\beta)$$
(16)

with suitable polynomials $Q_{p,g,\lambda}(t)$.

Ad (15). As $\sup\{|K_{n-\nu,j}^{(j+1)}(\xi)|: \xi \in \mathbb{R}, n \in \mathbb{N}, \nu \in N_n\} < \infty$, we obtain from (13) that

$$B_{n} \leq c \sup_{|t| \leq \sqrt{r \lg n}} \sum_{v \in N_{n}} \int |h_{v}(\omega)| |u_{t,n,v}(\omega) - t|^{j+1} P(d\omega)$$

$$\leq c \frac{(\lg n)^{(j+1)/2}}{n^{j+1}} \sum_{v \in N_{n}} v^{j+1} E(|h_{v}|)$$

$$+ \frac{c}{n^{(j+1)/2}} \sum_{v \in N_{n}} E(|h_{v}| |S_{v}|^{j+1}). \tag{13}$$

Hence by (1) and (B)

$$B_n \leq c \frac{(\lg n)^{(j+1)/2}}{n^{j+1}} \sum_{v \in N_n} \frac{v^{j+1}}{v^{(r-2)/2}} (\lg v)^{\beta} + O_n(r, \beta).$$

Consequently by Lemma 5

$$B_n \leq c \frac{(\lg n)^{(j+1)/2}}{n^{(r-2)/2}} (\lg n)^{\beta - (j+1) + (r-2)/2} + O_n(r, \beta) = O_n(r, \beta).$$

Thus we have (15).

Ad(16). Let $\lambda \in \{1, ..., j\}$ be fixed. We have with suitable polynomials $\hat{Q}_i(t)$ that

$$K_{n-\nu,j}^{(\lambda)}(t) = \Phi^{(\lambda)}(t) + \sum_{i=1}^{j} \frac{1}{(n-\nu)^{i/2}} (\varphi \cdot Q_i)^{(\lambda)}(t)$$
$$= \varphi(t) \sum_{i=0}^{j} \frac{1}{(n-\nu)^{i/2}} \hat{Q}_i(t). \tag{17}$$

Furthermore we have by definition of $u_{t,n,\nu}(\omega)$ and f(x) that

$$(u_{t,n,\nu}(\omega) - t)^{\lambda} = \sum_{\varepsilon=0}^{\lambda} {\lambda \choose \varepsilon} t^{\varepsilon} f^{\varepsilon} \left(\frac{\nu}{n}\right) (-1)^{\lambda-\varepsilon} \frac{1}{(n-\nu)^{(\lambda-\varepsilon)/2}} S_{\nu}^{\lambda-\varepsilon}(\omega).$$
 (18)

According to (17) and (18), relation (16) is shown if we prove that for each $0 \le i \le j$, $0 \le \varepsilon \le \lambda$ uniformly in $|t| \le \sqrt{r \lg n}$,

$$\varphi(t) \, \hat{Q}_i(t) \begin{pmatrix} \lambda \\ \varepsilon \end{pmatrix} (-1)^{\lambda - \varepsilon} \, t^{\varepsilon} \sum_{v \in N_n} \frac{f^{\varepsilon}(v/n)}{(n - v)^{(i + \lambda - \varepsilon)/2}} \, E(h_v S_v^{\lambda - \varepsilon})$$

$$= \varphi(t) \sum_{p=1}^J \frac{1}{n^{p/2}} \, R_p(t) + O_n(r, \beta)$$

with suitable polynomials $R_p(t) = R_{p,i,\varepsilon,\lambda,g}(t)$.

We have

$$f^{\varepsilon}\left(\frac{v}{n}\right)\frac{1}{(n-v)^{(\lambda-\varepsilon+i)/2}} = \frac{1}{n^{(\lambda-\varepsilon+i)/2}} \frac{(1-\sqrt{1-v/n})^{\varepsilon}}{(1-v/n)^{(\lambda+i)/2}}.$$

By Taylor expansion we furthermore have

$$q_{\varepsilon}(x) := q_{\varepsilon,\lambda,i}(x) := \frac{(1 - \sqrt{1 - x})^{\varepsilon}}{(1 - x)^{(\lambda + i)/2}} = \sum_{l=0}^{j} \frac{q_{\varepsilon}^{(l)}(0)}{l!} x^{l} + O(x^{j+1}).$$

Hence for $v \in N_n$, $n \in \mathbb{N}$,

$$f^{\varepsilon}\left(\frac{v}{n}\right)\frac{1}{(n-v)^{(\lambda-\varepsilon+i)/2}} = \frac{1}{n^{(\lambda-\varepsilon+i)/2}} \left[\sum_{l=0}^{j} \frac{q_{\varepsilon}^{(l)}(O)}{l!} \left(\frac{v}{n}\right)^{l} + O\left(\left(\frac{v}{n}\right)^{j+1}\right)\right].$$

Observe that $q_{\varepsilon}^{(0)}(0) = 0$ if $\varepsilon > 0$. Consequently (19) is shown if we prove that

$$\frac{1}{n^{(\lambda-\varepsilon+i)/2+l}} \sum_{v \in N_n} v^l E(h_v S_v^{\lambda-\varepsilon}) = \frac{c}{n^{(\lambda-\varepsilon+i)/2+l}} + O_n(r,\beta)$$
 (20)

for $\frac{1}{2} \leq (\lambda - \varepsilon + i)/2 + l \leq j/2$ and

$$\frac{1}{n^{(\lambda-\varepsilon+i)/2+l}} \sum_{v \in N_n} v^l E(|h_v| |S_v|^{\lambda-\varepsilon}) = O_n(r,\beta)$$
 (21)

for $(\lambda - \varepsilon + i)/2 + l > j/2$. Relation (20) follows from (A) with $c = \sum_{\nu \in \mathbb{N}_1} \nu^l E(h_{\nu} S_{\nu}^{\lambda - \varepsilon})$. Relation (21) follows from a slight modification of (B). Thus (P3) is shown.

Now it remains to show that (P1)–(P3) imply the assertion, i.e., we have to prove (7).

Since for v < n the function $\omega \to F_{n-v}(\sqrt{n/(n-v)}\ t - (1/\sqrt{n-v})\ S_v(\omega))$ is a version of $P(S_n^* \le t \mid X_1, ..., X_v)$ and since h_v is $\sigma(X_1, ..., X_v)$ -measurable we obtain that

$$E(S_n^* \leq t, h_v) = \int h_v(\omega) F_{n-v} \left(\sqrt{\frac{n}{n-v}} t - \frac{1}{\sqrt{n-v}} S_v(\omega) \right) P(d\omega).$$

Hence

$$\begin{split} &\sum_{v \in N_n} E(S_n^* \leqslant t, h_v) \\ &= \sum_{v \in N_n} \int h_v(\omega) \, D_{n-v,j} \left(\sqrt{\frac{n}{n-v}} \, t - \frac{1}{\sqrt{n-v}} \, S_v(\omega) \right) P(d\omega) \\ &\quad + \sum_{v \in N_n} \int h_v(\omega) \left[K_{n-v,j} \left(\sqrt{\frac{n}{n-v}} \, t - \frac{1}{\sqrt{n-v}} \, S_v(\omega) \right) - K_{n-v,j}(t) \right] P(d\omega) \\ &\quad + \sum_{v \in N_n} \int h_v(\omega) \, K_{n-v,j}(t) \, P(d\omega). \end{split}$$

Thus (P1)-(P3) imply (7) and hence the assertion.

Proof of Example 2. For the case r=3 see Example 5 of [2] with $h(n) \equiv 1$ if $\beta = -\frac{3}{2}$ and $h(n) = (\lg n)^{\beta + r/2}$ if $\beta > -r/2$.

Therefore we assume r > 3. The concept for all three cases of this example is the following: Let $t_0 \in \mathbb{R}$ and $c_0 \in (0, 1]$ be the constants of Lemma 3 and put $k(n) := [c_0(n/\lg n)]$. We construct a subsequence $\hat{\mathbb{N}} \subset \mathbb{N}$ and disjoint sets $B_v \in \sigma(X_1, ..., X_v)$, $v \in \mathbb{N}$, with the following properties:

(P1)
$$B_{\nu} \subset \{\sqrt{\lg \nu}/2 \leqslant S_{\nu}^* \leqslant \sqrt{\lg \nu}\}, \quad \nu \in \mathbb{N}$$

(P2)
$$\sum_{v>n} P(B_v) = O\left(\frac{1}{n^{(r-2)/2}} (\lg n)^{\beta}\right)$$

(P3)
$$\sum_{v>k(n)} P(B_v) = o(\delta_n), \qquad n \in \widehat{\mathbb{N}}$$

(P4)
$$\frac{1}{n^{l+\tau/2}} \sum_{v>k(n)} v^{l} E(|S_{v}|^{\tau} 1_{B_{v}}) = o(\delta_{n}), n \in \widehat{\mathbb{N}},$$
if $l + \tau/2 \le i/2, l \ge 0, \tau \ge 0, l, \tau \in \mathbb{R}$

(P5)
$$\frac{1}{n^{l+\tau/2}} \sum_{v \leqslant k(n)} v^{l} E(|S_{v}|^{\tau} 1_{B_{v}}) = o(\delta_{n}), n \in \widehat{\mathbb{N}},$$
 if $l + \tau/2 \geqslant (j+1)/2, l \geqslant 0, 0 \leqslant \tau \leqslant j, l, \tau \in \mathbb{R}$

(P6)
$$\sum_{v \leq k(n)} \left(\frac{v \lg v}{n} \right)^{(j+1)/2} P(B_v) \simeq \tilde{c}\delta_n, n \in \hat{\mathbb{N}},$$
with suitable $\tilde{c} > 0$.

Let us first see whether (P1)-(P6) lead to an example of the desired kind. Put $B = \sum_{v \in \mathbb{N}} B_v$. Then by (P2)

$$d(B, \sigma(X_1, ..., X_n)) \leqslant \sum_{\nu > n} P(B_{\nu}) = O\left(\frac{1}{n^{(r-2)/2}} (\lg n)^{\beta}\right),$$

i.e., (*) is fulfilled. By (P3) we obtain

$$P(S_n^* \leq t_0, B) - \Phi(t_0) P(B)$$

$$= \sum_{v \leq k(n)} (P(S_n^* \leq t_0, B_v) - \Phi(t_0) P(B_v)) + o(\delta_n), \qquad n \in \hat{\mathbb{N}}.$$

Hence, using (P1), Lemma 3 implies that

$$P(S_n^* \leqslant t_0, B) - \Phi(t_0) P(B)$$

$$= \sum_{i=1}^{j} \frac{\Phi^{(i)}(t_0)}{i!} \sum_{v \leqslant k(n)} \int_{B_v} \left(t_0 f\left(\frac{v}{n}\right) - \frac{S_v}{\sqrt{n-v}} \right)^i dP + o(\delta_n) + \tilde{\varepsilon}_n, \quad (1)$$

where by (P6),

$$\tilde{c}_1 \delta_n \leqslant \tilde{\epsilon}_n = \sum_{v \leqslant k(n)} \epsilon_{n,v} \leqslant \tilde{c}_2 \delta_n, \qquad n \in \hat{\mathbb{N}} \text{ large enough},$$
 (2)

with suitable \tilde{c}_1 , $\tilde{c}_2 < 0$.

By similar methods as in the proof of Theorem 1 (where (A) and (B) implied (16)) we obtain from (P4), (P5) that there exist $a_1, ..., a_j \in \mathbb{R}$ such that

$$\sum_{i=1}^{j} \frac{\Phi^{(i)}(t_0)}{i!} \sum_{v \leqslant k(n)} \int_{B_v} \left(t_0 f\left(\frac{v}{n}\right) - \frac{S_v}{\sqrt{n-v}} \right)^i dP$$

$$= \sum_{i=1}^{j} \frac{a_i}{n^{i/2}} + o(\delta_n), \qquad n \in \widehat{\mathbb{N}}.$$
(3)

Now (1)–(3) imply that

$$P(S_n^* \le t_0, B) = \Phi(t_0) P(B) + \sum_{i=1}^{j} \frac{a_i}{n^{i/2}} + \varepsilon_n, \qquad n \in \widehat{\mathbb{N}},$$
 (4)

where with suitable c_3 , $c_4 < 0$,

$$c_3 \delta_n \leqslant \varepsilon_n \leqslant c_4 \delta_n$$
 for sufficiently large $n \in \widehat{\mathbb{N}}$. (5)

By Theorem 1 we obtain

$$P(S_n^* \leq t_0, B) = \Phi(t_0) P(B) + \varphi(t_0) \sum_{i=1}^{j} \frac{1}{n^{i/2}} Q_{i,B}(t_0) + O(\delta_n).$$
 (6)

Now (4)–(6) yield $a_i = \varphi(t_0) Q_{i,B}(t_0)$, i = 1, ..., j, and hence (4), (5) imply the assertion.

Thus it remains to construct $\hat{\mathbb{N}} \subset \mathbb{N}$ and $B_v \in \sigma(X_1, ..., X_v)$, $v \in \mathbb{N}$, disjoint, fulfilling (P1)-(P6). We distinguish the cases $r \in \mathbb{N}$ and $r \notin \mathbb{N}$.

Case $r \in \mathbb{N}$. Here j = j(r) = r - 3 and $\beta \ge -r/2$. Since

$$P\{\sqrt{\lg \nu}/2 \leqslant S_{\nu}^* \leqslant \sqrt{\lg \nu}\} = \Phi(\sqrt{\lg \nu}) - \Phi(\sqrt{\lg \nu}/2) \geqslant \frac{1}{\nu^{1/4}}$$

for all sufficiently large v, there exist $v_0 \in \mathbb{N}$ and disjoint $B_v \in \sigma(X_1, ..., X_v)$, $v \ge v_0$, such that

$$B_{\nu} \subset \{\sqrt{\lg \nu}/2 \leqslant S_{\nu}^* \leqslant \sqrt{\lg \nu}\}, \qquad \nu \geqslant \nu_0, \tag{7}$$

$$P(B_{\nu}) = \frac{1}{\nu^{r/2}} (\lg \nu)^{\beta}, \qquad \nu \geqslant \nu_0.$$
 (8)

Put $B_{\nu} = \emptyset$ for $\nu < \nu_0$ and take $\hat{\mathbb{N}} = \mathbb{N}$. Then obviously (P1), (P2) are fulfilled.

Ad (P3). For sufficiently large n we have by (P2) that

$$\sum_{v > k(n)} P(B_v) \leq c \frac{1}{(k(n))^{(r-2)/2}} (\lg k(n))^{\beta}$$

$$\leq c \frac{1}{n^{(r-2)/2}} (\lg n)^{\beta + (r-2)/2} = o(\delta_n).$$

Ad (P4). Let $l + \tau/2 \le j/2 = (r-3)/2$. Then we obtain

$$H(n) := \frac{1}{n^{l+\tau/2}} \sum_{v > k(n)} v^{l} E(|S_{v}|^{\tau} 1_{B_{v}})$$

$$\leq \frac{1}{n^{l+\tau/2}} \sum_{v > k(n)} v^{l} (v \lg v)^{\tau/2} P(B_{v})$$

$$= \frac{1}{(8)} \sum_{n^{l+\tau/2}} \sum_{v > k(n)} v^{l+\tau/2-r/2} (\lg v)^{\beta+\tau/2}$$

and $l + \tau/2 - r/2 \leqslant -\frac{3}{2}$ implies

$$H(n) \le c \frac{1}{n^{l+\tau/2}} (k(n))^{l+\tau/2-r/2+1} (\lg k(n))^{\beta+\tau/2}$$

$$\le c \frac{1}{n^{(r-2)/2}} (\lg n)^{\beta+(r-2)/2-l} = o(\delta_n).$$

Ad (P5). Let
$$l + \tau/2 \ge (j+1)/2 = (r-2)/2$$
, $0 \le \tau \le j$. Then
$$L(n) = \frac{1}{n^{l+\tau/2}} \sum_{v \le k(n)} v^l E(|S_v|^{\tau} 1_{B_v})$$

$$\le c \frac{1}{n^{l+\tau/2}} \sum_{2 \le v \le k(n)} v^{l+\tau/2-r/2} (\lg v)^{\beta+\tau/2}.$$

First let $l + \tau/2 = (r-2)/2$. Since $\tau \le j = r-3$ this implies $l \ge \frac{1}{2}$ and hence by a simple calculation

$$L(n) \leq c \frac{1}{n^{(r-2)/2}} \sum_{2 \leq v \leq k(n)} \frac{1}{v} (\lg v)^{-1/2 + \beta + (r-2)/2}$$

$$= \begin{cases} o\left(\frac{\lg \lg n}{n^{(r-2)/2}}\right) : \beta = -r/2 \\ o\left(\frac{(\lg n)^{\beta + r/2}}{n^{(r-2)/2}}\right) : \beta > -r/2 \end{cases} = o(\delta_n).$$

It remains to consider the case $l + \tau/2 > (r-2)/2$. Then $l + \tau/2 - r/2 > -$ and we have

$$L(n) \le c \frac{1}{n^{l+\tau/2}} \left((k(n))^{l+\tau/2-r/2+1} \left(\lg k(n) \right)^{\beta+\tau/2} \right)$$

$$\le c \frac{1}{n^{(r-2)/2}} \left(\lg n \right)^{\beta+(r-2)/2} = o(\delta_n).$$

Ad (P6). We have by (8)

$$\begin{split} &\sum_{v \leqslant k(n)} \left(\frac{v \lg v}{n} \right)^{(j+1)/2} P(B_v) \\ &= \frac{1}{n^{(r-2)/2}} \sum_{v_0 \leqslant v \leqslant k(n)} \frac{1}{v} (\lg v)^{\beta + (r-2)/2} \\ &\simeq \begin{cases} \frac{\lg \lg n}{n^{(r-2)/2}}, & \text{if } \beta = -r/2 \\ \frac{1}{\beta + r/2} \frac{(\lg n)^{\beta + r/2}}{n^{(r-2)/2}}, & \text{if } \beta > -r/2 \end{cases} = \tilde{c} \delta_n. \end{split}$$

Case $r \notin \mathbb{N}$. Here j = j(r) = [r] - 2 and $\beta \geqslant -(r-2)/2$. Put

$$\widetilde{\mathbb{N}} := \left\{ 2^{2^i} : i \in \mathbb{N} \right\} \quad \text{and} \quad \widehat{\mathbb{N}} := \left\{ n \in \mathbb{N} : k(n) = \left[c_0 \frac{n}{\lg n} \right] \in \widetilde{\mathbb{N}} \right\}.$$

Then there exist $v_0 \in \mathbb{N}$ and disjoint $B_v \in \sigma(X_1, ..., X_v)$, $v \in \widetilde{\mathbb{N}}$, $v \geqslant v_0$, such that

$$B_{\nu} \subset \{\sqrt{\lg \nu}/2 \leqslant S_{\nu}^* \leqslant \sqrt{\lg \nu}\} \tag{9}$$

$$P(B_{\nu}) = \frac{1}{\nu^{(r-2)/2}} (\lg \nu)^{\beta}, \qquad \nu \in \tilde{\mathbb{N}}, \ \nu \geqslant \nu_0.$$
 (10)

Put $B_{\nu} = \emptyset$ if $\nu < \nu_0$ or $\nu \notin \tilde{\mathbb{N}}$. Then obviously (P1), (P2) are fulfilled.

Ad (P3). Let $n \in \widehat{\mathbb{N}}$. Then $k(n) \in \widetilde{\mathbb{N}}$ and therefore $B_v = \emptyset$ if $k(n) < v < k^2(n)$. Hence we obtain for sufficiently large $n \in \widehat{\mathbb{N}}$

$$\sum_{v>k(n)} P(B_v) = \sum_{v>n} P(B_v) = o(\delta_n), \qquad n \in \hat{\mathbb{N}}.$$

Ad (P4). Let
$$l + \tau/2 \le j/2 = (\lceil r \rceil - 2)/2$$
. We have by (9), (10) that
$$H(n) = \frac{1}{n^{l+\tau/2}} \sum_{v > k(n)} v^{l} E(|S_{v}|^{\tau} 1_{B_{v}})$$

$$\le \frac{1}{n^{l+\tau/2}} \sum_{v > k(n)} v^{l+\tau/2} (\lg v)^{\tau/2} P(B_{v})$$

$$\le \frac{1}{n^{l+\tau/2}} \sum_{v > k(n)} v^{l+\tau/2} (\lg v)^{\tau/2} P(B_{v})$$

Let $n \in \widehat{\mathbb{N}}$. Then v > k(n), $v \in \widetilde{\mathbb{N}}$, implies $v \ge k^2(n) \ge k(n) \lg k(n)$. As $l + \tau/2 - (r-2)/2 < 0$ we consequently obtain for sufficiently large $n \in \widehat{\mathbb{N}}$

$$H(n) \leq c \frac{1}{n^{l+\tau/2}} (k(n) \lg k(n))^{l+\tau/2 - (r-2)/2} (\lg n)^{\beta + \tau/2}$$

$$\leq c \frac{1}{n^{(r-2)/2}} (\lg n)^{\beta + \tau/2}$$

$$= o \left(\frac{1}{n^{(r-2)/2}} (\lg n)^{\beta + (r-2)/2} \right) = o(\delta_n), \qquad n \in \widehat{\mathbb{N}}.$$

Ad (P5). Let $l + \tau/2 \ge (j+1)/2 = ([r]-1)/2$ and $0 \le \tau \le j$. We have

$$L(n) := \frac{1}{n^{l+\tau/2}} \sum_{v \leqslant k(n)} v^{l} E(|S_{v}|^{\tau} 1_{B_{v}})$$

$$\underset{(9), (10)}{\leqslant} \frac{1}{n^{l+\tau/2}} \sum_{v_{0} \leqslant v \leqslant k(n), v \in \tilde{\mathbb{N}}} v^{l+\tau/2-(r-2)/2} (|g|v)^{\beta+\tau/2}.$$

As $l + \tau/2 \ge (\lceil r \rceil - 1)/2 > (r - 2)/2$ and as $k(n) \in \widetilde{\mathbb{N}}$ for all $n \in \widehat{\mathbb{N}}$, we obtain for all sufficiently large $n \in \widehat{\mathbb{N}}$

$$L(n) \le c \frac{1}{n^{l+\tau/2}} (k(n))^{l+\tau/2 - (r-2)/2} (\lg k(n))^{\beta + \tau/2}$$

$$\le c \frac{1}{n^{(r-2)/2}} (\lg n)^{\beta + (r-2)/2 - l}.$$

As $l + \tau/2 > j/2$ and $\tau \le j$, we have l > 0. Therefore

$$L(n) = o\left(\frac{1}{n^{(r-2)/2}} (\lg n)^{\beta + (r-2)/2}\right) = o(\delta_n), \qquad n \in \widehat{\mathbb{N}}.$$

Ad (P6). Since j+1>r-2, we obtain by (10) for all $n \in \mathbb{N}$

$$\sum_{v \leqslant k(n)} \left(\frac{v \lg v}{n} \right)^{(j+1)/2} P(B_v)$$

$$\stackrel{=}{=} \frac{1}{n^{(j+1)/2}} \sum_{v_0 \leqslant v \leqslant k(n), v \in \mathbb{N}} v^{(j+1)/2 - (r-2)/2} (\lg v)^{\beta + (j+1)/2}$$

$$\simeq \frac{1}{n^{(j+1)/2}} (k(n))^{(j+1)/2 - (r-2)/2} (\lg k(n))^{\beta + (j+1)/2}$$

$$\simeq \tilde{c} \frac{1}{n^{(r-2)/2}} (\lg n)^{\beta + (r-2)/2} = \tilde{c} \delta_n, \quad n \in \mathbb{N}$$

with $\tilde{c} := c_0^{(j+1)/2 - (r-2)/2}$.

LEMMA 3. Let X_n , $n \in \mathbb{N}$, be i.i.d. N(0, 1)-distributed. Let $j \in \mathbb{N}$ and put $f(x) = (1-x)^{-1/2} - 1$.

Then there exist $t_0 \in \mathbb{R}$, $c_0 \in (0, 1]$ such that for all sufficiently large $n \in \mathbb{N}$, all $v \leqslant c_0$ n/lg n, and all $B_v \in \sigma(X_1, ..., X_v)$ with $B_v \subset \{\sqrt{\lg v}/2 \leqslant S_v^* \leqslant \sqrt{\lg v}\}$,

$$P(S_n^* \leq t_0, B_v) - \Phi(t_0) P(B_v)$$

$$= \sum_{i=1}^{j} \frac{\Phi^{(i)}(t_0)}{i!} \int_{B_v} \left(t_0 f\left(\frac{v}{n}\right) - \frac{S_v}{\sqrt{n-v}} \right)^i dP + \varepsilon_{n,v}$$

holds, where for suitable $c_1, c_2 < 0$,

$$c_1\left(\frac{v\lg v}{n}\right)^{(j+1)/2}P(B_v)\leqslant \varepsilon_{n,v}\leqslant c_2\left(\frac{v\lg v}{n}\right)^{(j+1)/2}P(B_v).$$

Proof. It is easy to see that there exists $t_0 \ge 1$ with

$$(-1)^{j+1} \Phi^{(j+1)}(t_0) < 0. \tag{1}$$

Since $\omega \to \Phi(t_0 \sqrt{n/(n-v)} - S_v(\omega)/\sqrt{n-v})$ is a version of $P(S_n^* \le t_0 \mid X_1, ..., X_v)$, v < n, and since $B_v \in \sigma(X_1, ..., X_v)$ we obtain

$$P(S_n^* \leq t_0, B_v) - \Phi(t_0) P(B_v) = \int_{B_v} \left(\Phi\left(t_0 \sqrt{\frac{n}{n-v}} - \frac{S_v}{\sqrt{n-v}} \right) - \Phi(t_0) \right) dP.$$
 (2)

By the Taylor expansion we have

$$\Phi(u) - \Phi(t_0) = \sum_{i=1}^{j} \frac{\Phi^{(i)}(t_0)}{i!} (u - t_0)^i + \frac{1}{(i+1)!} (u - t_0)^{j+1} \Phi^{(j+1)}(\xi)$$
(3)

with $\xi \in [u, t_0]$. Put $u = u_{\nu,n}(\omega) = t_0 \sqrt{n/(n-\nu)} - (1/\sqrt{n-\nu}) S_{\nu}(\omega)$; then

$$u - t_0 = t_0 f\left(\frac{v}{n}\right) - \frac{S_v}{\sqrt{n - v}}.$$
 (4)

Hence (2)–(4) imply the assertion if we prove that the stated inequality for $\varepsilon_{n,\nu}$ is fulfilled with

$$\begin{split} \varepsilon_{n,\nu} &= \frac{1}{(j+1)!} \int_{B_{\nu}} (u - t_0)^{j+1} \, \varPhi^{(j+1)}(\xi) \, dP \\ &= \frac{1}{(j+1)!} \sum_{l=0}^{j+1} \binom{j+1}{l} \int_{B_{\nu}} \left(t_0 f \left(\frac{\nu}{n} \right) \right)^l \\ &\times (-1)^{j+1-l} \left(\frac{S_{\nu}}{\sqrt{n-\nu}} \right)^{j+1-l} \varPhi^{(j+1)}(\xi) \, dP, \end{split}$$

where $\xi = \xi_{\nu,n}(\omega) \in [u_{\nu,n}(\omega), t_0]$. As $S_{\nu}(\omega) \leq \sqrt{\nu \lg \nu}$ for each $\omega \in B_{\nu}$ we obtain for all $1 \leq l \leq j+1$, $\nu \leq n/\lg n$

$$\left| \int_{B_{\nu}} \left(t_{0} f\left(\frac{\nu}{n}\right) \right)^{l} \left(\frac{S_{\nu}}{\sqrt{n-\nu}} \right)^{j+1-l} \Phi^{(j+1)}(\xi) dP \right|$$

$$\leq c \left(\frac{\nu}{n}\right)^{l} \frac{1}{n^{(j+1-l)/2}} \int_{B_{\nu}} |S_{\nu}|^{j+1-l} dP$$

$$\leq c \frac{1}{n^{(j+1)/2}} \frac{\nu^{l}}{n^{l/2}} (\nu \lg \nu)^{(j+1-l)/2} P(B_{\nu})$$

$$\leq c \left(\frac{\nu \lg \nu}{n}\right)^{(j+1)/2} P(B_{\nu}) \left(\frac{\nu}{n}\right)^{l/2}$$

$$\leq c \left(\frac{\nu \lg \nu}{n}\right)^{(j+1)/2} P(B_{\nu}) \left(\frac{1}{\lg n}\right)^{l/2}$$

Hence the stated inequality for $\varepsilon_{n,\nu}$ holds, if there exist $0 < c_0 \le 1$ and c_3 , $c_4 < 0$ such that for all sufficiently large n and all $\nu \le c_0(n/\lg n)$,

$$c_{3} \left(\frac{v \lg v}{n}\right)^{(j+1)/2} P(B_{v})$$

$$\leq \int_{B_{v}} \left(\frac{S_{v}}{\sqrt{n-v}}\right)^{j+1} (-1)^{j+1} \Phi^{(j+1)}(\xi) dP \leq c_{4} \left(\frac{v \lg v}{n}\right)^{(j+1)/2} P(B_{v}). \tag{5}$$

To prove (5) choose $\delta_0 > 0$ and c_5 , $c_6 < 0$ such that

$$c_5 \le (-1)^{j+1} \Phi^{(j+1)}(\xi) \le c_6$$
 for all $\xi \in [t_0 - \delta_0, t_0 + \delta_0]$. (6)

This is possible according to (1). As $B_{\nu} \subset \{\sqrt{\lg \nu}/2 \leqslant S_{\nu}^* \leqslant \sqrt{\lg \nu}\}$ it is easy to see that there exist $c_0 \in (0, 1]$, $n_0 \in \mathbb{N}$ such that

$$u_{\nu,n}(\omega) = t_0 \sqrt{\frac{n}{n-\nu}} - \frac{S_{\nu}(\omega)}{\sqrt{n-\nu}} \in [t_0 - \delta_0, t_0 + \delta_0]$$

and hence

$$\xi_{v,n}(\omega) \in [t_0 - \delta_0, t_0 + \delta_0] \tag{7}$$

for all $\omega \in B_{\nu}$, $n \ge n_0$, and $\nu \le c_0(n/\lg n)$. Now (6) and (7) imply (5). This finishes the proof of the assertion.

LEMMA 4. Let $X_n \in \mathcal{L}_r$, $n \in \mathbb{N}$, be i.i.d. with $E(X_n) = 0$ and $E(X_n^2) = 1$. Let $r \ge 3$; then we have for all $\gamma \ge \frac{1}{2}$ and $0 < \tau < r$

$$E[|S_m|^{\tau} 1_{\{|S_m^*| \ge \sqrt{r-1} (\lg m)^{\gamma}\}}] \le cm^{\tau/2 - (r-2)/2} (\lg m)^{\gamma(\tau-r)}$$

with a suitable constant c > 0.

Proof. We have

$$\begin{split} E[\mid S_{m}\mid^{\tau} 1_{\{\mid S_{m}^{*}\mid \geqslant \sqrt{r-1} \; (\lg m)^{\gamma}\}}] \\ &= \left[(m(r-1))^{1/2} \; (\lg m)^{\gamma} \right]^{\tau} \\ &\times E\left[\left| \frac{\mid S_{m}\mid}{\sqrt{m(r-1)} \; (\lg m)^{\gamma}} \right|^{\tau} 1_{\{\mid S_{m}/\sqrt{m(r-1)} \; (\lg m)^{\gamma}\mid^{\tau} \geqslant 1\}} \right] \\ &\leqslant cm^{\tau/2} \; (\lg m)^{\gamma\tau} \sum_{k \in \mathbb{N}} P\left\{ \left| \frac{S_{m}}{\sqrt{m(r-1)} \; (\lg m)^{\gamma}} \right|^{\tau} \geqslant k \right\} \\ &\leqslant cm^{\tau/2} (\lg m)^{\gamma\tau} \sum_{k \in \mathbb{N}} P\left\{ \mid S_{m}^{*}\mid \geqslant k^{1/\tau} \; \sqrt{r-1} \; (\lg m)^{\gamma} \right\} \\ &\leqslant cm^{\tau/2} (\lg m)^{\gamma\tau} \sum_{k \in \mathbb{N}} \frac{1}{m^{(r-2)/2}} \frac{1}{k^{r/\tau} (\lg m)^{\gamma r}} \\ &\leqslant cm^{\tau/2 - (r-2)/2} (\lg m)^{\gamma(\tau-r)}, \end{split}$$

where (*) follows from Theorem 2 of [5] or from Corollary 17.12 of [1].

LEMMA 5. Let $\mathbb{N}_1 = \{2^v : v \in \mathbb{N}\}$ and $N_n = \{v \in \mathbb{N}_1 : v \leq n/\lg n\}$. Then

$$\sum_{v \in N_n} v^{\varepsilon} (\lg v)^{\gamma} = \begin{cases} O(n^{\varepsilon} (\lg n)^{\gamma - \varepsilon}), & \varepsilon > 0, \quad \gamma \in \mathbb{R} \\ O((\lg n)^{\gamma + 1}), & \varepsilon = 0, \quad \gamma > -1 \\ O(\lg \lg n), & \varepsilon = 0, \quad \gamma = -1 \\ O(1), & \varepsilon = 0, \quad \gamma < -1. \end{cases}$$

REFERENCES

- R. N. BHATTACHARYA AND R. R. RAO, "Normal Approximation and Asymptotic Expansions," Wiley, New York, 1976.
- D. Landers and L. Rogge, Exact approximation orders in the conditional central limit theorem, Z. Wahrsch. Verw. Gebiete 66 (1984), 227-244.
- D. LANDERS AND L. ROGGE, Uniform normal approximation orders for families of dominated measures, J. Approx. Theory 45 (1985), 99-121.
- 4. D. Landers and L. Rogge, Second-order approximation in the conditional central limit theorem, *Ann. Probab.* 14 (1986), 313-325.
- R. MICHEL, Nonuniform central limit bounds with applications to probabilities of deviations, Ann. Probab. 4 (1976), 102-106.
- V. V. Petrov, "Sums of Independent Random Variables," Springer-Verlag, Berlin/ New York, 1975.